Xinghua Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4906263/publications.pdf

Version: 2024-02-01

759233 713466 22 733 12 21 h-index citations g-index papers 22 22 22 1268 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab on A Chip, 2018, 18, 486-495.	6.0	181
2	Microfluidic platform towards point-of-care diagnostics in infectious diseases. Journal of Chromatography A, 2015, 1377, 13-26.	3.7	176
3	Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips. Genes, 2017, 8, 244.	2.4	75
4	Detection of Phenylketonuria Markers Using a ZIF-67 Encapsulated PtPd Alloy Nanoparticle (PtPd@ZIF-67)-Based Disposable Electrochemical Microsensor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20734-20742.	8.0	43
5	Biomimetic human lung-on-a-chip for modeling disease investigation. Biomicrofluidics, 2019, 13, 031501.	2.4	38
6	Organ-on-Chip Technology: Current State and Future Developments. Genes, 2017, 8, 266.	2.4	26
7	Functionalized PDMS with Versatile and Scalable Surface Roughness Gradients for Cell Culture. ACS Applied Materials & Interfaces, 2015, 7, 17181-17187.	8.0	24
8	Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co ulture via Microfluidic Spinning. Macromolecular Bioscience, 2020, 20, 1900395.	4.1	24
9	Regulation of cell migration and osteogenic differentiation in mesenchymal stem cells under extremely low fluidic shear stress. Biomicrofluidics, $2014, 8, .$	2.4	22
10	A simple elastic membraneâ€based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis, 2011, 32, 3431-3436.	2.4	18
11	High throughput generation and trapping of individual agarose microgel using microfluidic approach. Microfluidics and Nanofluidics, 2013, 15, 467-474.	2.2	15
12	Microvalves actuated sandwich immunoassay on an integrated microfluidic system. Electrophoresis, 2009, 30, 2481-2487.	2.4	14
13	PLGA Nanofiber/PDMS Microporous Composite Membrane-Sandwiched Microchip for Drug Testing. Micromachines, 2020, 11, 1054.	2.9	11
14	An integrated microfluidic device for characterizing chondrocyte metabolism in response to distinct levels of fluid flow stimulus. Microfluidics and Nanofluidics, 2013, 15, 763-773.	2.2	10
15	2H–MoS2/Co3O4 nanohybrid with type I nitroreductase-mimicking activity for the electrochemical assays of nitroaromatic compounds. Analytica Chimica Acta, 2022, 1221, 340078.	5.4	10
16	3D Microstructure Inhibits Mesenchymal Stem Cells Homing to the Site of Liver Cancer Cells on a Microchip. Genes, 2017, 8, 218.	2.4	9
17	Facile fabrication of drug-loaded PEGDA microcapsules for drug evaluation using droplet-based microchip. Chinese Chemical Letters, 2022, 33, 2697-2700.	9.0	9
18	Design and Application of Metal Organic Framework ZIF-90-ZnO-MoS ₂ Nanohybrid for an Integrated Electrochemical Liquid Biopsy. Nano Letters, 2022, 22, 6833-6840.	9.1	8

XINGHUA GAO

#	Article	lF	CITATION
19	Regulating cell behaviors on micropillar topographies affected by interfacial energy. RSC Advances, 2015, 5, 22916-22922.	3.6	7
20	Probing tumor microtissue formation and epithelial-mesenchymal transition on a well-mesh microchip. Biomicrofluidics, 2019, 13, 014102.	2.4	7
21	3D printing of heterogeneous microfibers with multiâ€hollow structure via microfluidic spinning. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 913-922.	2.7	4
22	Investigating the Regulation of Neural Differentiation and Injury in PC12 Cells Using Microstructure Topographic Cues. Biosensors, 2021, 11, 399.	4.7	2