
Monica Bucciantini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4906186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Xenohormesis underlyes the anti-aging and healthy properties of olive polyphenols. Mechanisms of Ageing and Development, 2022, 202, 111620.	2.2	10
2	Correlation between Sialylation Status and Cell Susceptibility to Amyloid Toxicity. Cells, 2022, 11, 601.	1.8	4
3	The Transthyretin/Oleuropein Aglycone Complex: A New Tool against TTR Amyloidosis. Pharmaceuticals, 2022, 15, 277.	1.7	3
4	Olive phenols preserve lamin B1 expression reducing cGAS/STING/NFκBâ€mediated SASP in ionizing radiationâ€induced senescence. Journal of Cellular and Molecular Medicine, 2022, 26, 2337-2350.	1.6	10
5	Natural Compound from Olive Oil Inhibits S100A9 Amyloid Formation and Cytotoxicity: Implications for Preventing Alzheimer's Disease. ACS Chemical Neuroscience, 2021, 12, 1905-1918.	1.7	18
6	Structural Features and Toxicity of α-Synuclein Oligomers Grown in the Presence of DOPAC. International Journal of Molecular Sciences, 2021, 22, 6008.	1.8	8
7	EVOO Polyphenols Relieve Synergistically Autophagy Dysregulation in a Cellular Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 7225.	1.8	13
8	S-Homocysteinylation effects on transthyretin: worsening of cardiomyopathy onset. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129453.	1.1	5
9	Insight into the molecular mechanism underlying the inhibition of α-synuclein aggregation by hydroxytyrosol. Biochemical Pharmacology, 2020, 173, 113722.	2.0	25
10	Allium roseum L. extract inhibits amyloid beta aggregation and toxicity involved in Alzheimer's disease. PLoS ONE, 2020, 15, e0223815.	1.1	11
11	Maysin plays a protective role against α-Synuclein oligomers cytotoxicity by triggering autophagy activation. Food and Chemical Toxicology, 2020, 144, 111626.	1.8	5
12	The Amphipathic GM1 Molecule Stabilizes Amyloid Aggregates, Preventing their Cytotoxicity. Biophysical Journal, 2020, 119, 326-336.	0.2	7
13	Garcinoic acid prevents β-amyloid (Aβ) deposition in the mouse brain. Journal of Biological Chemistry, 2020, 295, 11866-11876.	1.6	18
14	Healthy Effects of Plant Polyphenols: Molecular Mechanisms. International Journal of Molecular Sciences, 2020, 21, 1250.	1.8	265
15	Protective effect of <i>Vigna unguiculata</i> extract against aging and neurodegeneration. Aging, 2020, 12, 19785-19808.	1.4	9
16	Successful Brain Delivery of Andrographolide Loaded in Human Albumin Nanoparticles to TgCRND8 Mice, an Alzheimer's Disease Mouse Model. Frontiers in Pharmacology, 2019, 10, 910.	1.6	28
17	Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ1-42 aggregation. Food and Chemical Toxicology, 2019, 129, 1-12.	1.8	46
18	1,2,4â€ŧrihydroxynaphthaleneâ€2â€Oâ€Î²â€Dâ€glucopyranoside delays amyloidâ€Î² ₄₂ aggregatior reduces amyloid cytotoxicity. BioFactors, 2018, 44, 272-280.	and 2.6	2

#	Article	IF	CITATIONS
19	A new purified Lawsoniaside remodels amyloid-β42 fibrillation into a less toxic and non-amyloidogenic pathway. International Journal of Biological Macromolecules, 2018, 114, 830-835.	3.6	1
20	Oleuropein aglycone: A polyphenol with different targets against amyloid toxicity. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1432-1442.	1.1	30
21	Screening for amyloid-β aggregation inhibitor and neuronal toxicity of eight Tunisian medicinal plants. Industrial Crops and Products, 2018, 111, 823-833.	2.5	14
22	Oleuropein aglycone stabilizes the monomeric α-synuclein and favours the growth of non-toxic aggregates. Scientific Reports, 2018, 8, 8337.	1.6	54
23	A FTIR microspectroscopy study of the structural and biochemical perturbations induced by natively folded and aggregated transthyretin in HL-1 cardiomyocytes. Scientific Reports, 2018, 8, 12508.	1.6	31
24	A specific nanobody prevents amyloidogenesis of D76N β2-microglobulin in vitro and modifies its tissue distribution in vivo. Scientific Reports, 2017, 7, 46711.	1.6	18
25	Efficacy of Oleuropein Aglycone in the Treatment of Transthyretin-Amyloidosis. Biochemistry & Molecular Biology Journal, 2016, 02, .	0.3	1
26	Biochemical and Electrophysiological Modification of Amyloid Transthyretin on Cardiomyocytes. Biophysical Journal, 2016, 111, 2024-2038.	0.2	19
27	Molecular insights into cell toxicity of a novel familial amyloidogenic variant of β2â€microglobulin. Journal of Cellular and Molecular Medicine, 2016, 20, 1443-1456.	1.6	23
28	The polyphenol Oleuropein aglycone hinders the growth of toxic transthyretin amyloid assemblies. Journal of Nutritional Biochemistry, 2016, 30, 153-166.	1.9	39
29	Clasmatodendrosis and βâ€amyloidosis in aging hippocampus. FASEB Journal, 2016, 30, 1480-1491.	0.2	16
30	Amyloid Aggregation: Role of Biological Membranes and the Aggregate–Membrane System. Journal of Physical Chemistry Letters, 2014, 5, 517-527.	2.1	88
31	Different ataxin-3 amyloid aggregates induce intracellular Ca 2+ deregulation by different mechanisms in cerebellar granule cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3155-3165.	1.9	22
32	Toxic effects of amyloid fibrils on cell membranes: the importance of ganglioside GM1. FASEB Journal, 2012, 26, 818-831.	0.2	118
33	Interactions of lysozyme with phospholipid vesicles: effects of vesicle biophysical features on protein misfolding and aggregation. Soft Matter, 2012, 8, 9115.	1.2	28
34	Lysozyme interaction with negatively charged lipid bilayers: protein aggregation and membrane fusion. Soft Matter, 2012, 8, 4524.	1.2	32
35	Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy. International Journal of Nanomedicine, 2011, 6, 3011.	3.3	50
36	Does azurin bind to the transactivation domain of p53? A Trp phosphorescence study. Biophysical Chemistry, 2011, 159, 287-293.	1.5	9

#	Article	IF	CITATIONS
37	Aβ(1-42) Aggregates into Non-Toxic Amyloid Assemblies in the Presence of the Natural Polyphenol Oleuropein Aglycon. Current Alzheimer Research, 2011, 8, 841-852.	0.7	113
38	Effect of Tetracyclines on the Dynamics of Formation and Destructuration of β2-Microglobulin Amyloid Fibrils. Journal of Biological Chemistry, 2011, 286, 2121-2131.	1.6	87
39	Oleuropein aglycon prevents cytotoxic amyloid aggregation of human amylinâ~†. Journal of Nutritional Biochemistry, 2010, 21, 726-735.	1.9	107
40	Embryonic stem and haematopoietic progenitor cells resist to AÎ ² oligomer toxicity and maintain the differentiation potency in culture. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2010, 17, 137-145.	1.4	3
41	Biological Membranes as Protein Aggregation Matrices and Targets of Amyloid Toxicity. Methods in Molecular Biology, 2010, 648, 231-243.	0.4	19
42	Proteomic analysis of cells exposed to prefibrillar aggregates of HypF-N. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1243-1250.	1.1	3
43	Synthetic Lipid Vesicles Recruit Native-Like Aggregates and Affect the Aggregation Process of the Prion Ure2p: Insights on Vesicle Permeabilization and Charge Selectivity. Biophysical Journal, 2009, 96, 3319-3330.	0.2	16
44	The (1–63) Region of the p53 Transactivation Domain Aggregates In Vitro into Cytotoxic Amyloid Assemblies. Biophysical Journal, 2008, 94, 3635-3646.	0.2	50
45	Nonspecific Interaction of Prefibrillar Amyloid Aggregates with Glutamatergic Receptors Results in Ca2+ Increase in Primary Neuronal Cells. Journal of Biological Chemistry, 2008, 283, 29950-29960.	1.6	46
46	Â2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity. Nephrology Dialysis Transplantation, 2008, 24, 1176-1181.	0.4	31
47	Natively Folded HypF-N and Its Early Amyloid Aggregates Interact with Phospholipid Monolayers and Destabilize Supported Phospholipid Bilayers. Biophysical Journal, 2006, 91, 4575-4588.	0.2	46
48	Prefibrillar Amyloid Aggregates Could Be Generic Toxins in Higher Organisms. Journal of Neuroscience, 2006, 26, 8160-8167.	1.7	222
49	The Yeast Prion Ure2p Native-like Assemblies Are Toxic to Mammalian Cells Regardless of Their Aggregation State*. Journal of Biological Chemistry, 2006, 281, 15337-15344.	1.6	41
50	Patterns of cell death triggered in two different cell lines by HypFâ€N prefibrillar aggregates. FASEB Journal, 2005, 19, 1-23.	0.2	42
51	Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. Journal of Cell Science, 2005, 118, 3459-3470.	1.2	85
52	Prefibrillar Amyloid Protein Aggregates Share Common Features of Cytotoxicity. Journal of Biological Chemistry, 2004, 279, 31374-31382.	1.6	346
53	Monitoring the Process of HypF Fibrillization and Liposome Permeabilization by Protofibrils. Journal of Molecular Biology, 2004, 338, 943-957.	2.0	101
54	Crystal Structure and Anion Binding in the Prokaryotic Hydrogenase Maturation Factor HypF Acylphosphatase-like Domain. Journal of Molecular Biology, 2002, 321, 785-796.	2.0	63

#	Article	IF	CITATIONS
55	Crystallization and preliminary X-ray characterization of the acylphosphatase-like domain from theEscherichia colihydrogenase maturation factor HypF. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 524-525.	2.5	6
56	Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 2002, 416, 507-511.	13.7	2,322
57	Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF Nâ€terminal domain. Protein Science, 2001, 10, 2541-2547.	3.1	47
58	Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Science, 2001, 10, 2541-2547.	3.1	103
59	Stabilisation of α-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding. Journal of Molecular Biology, 2000, 300, 633-647.	2.0	53
60	Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nature Structural Biology, 1999, 6, 1005-1009.	9.7	257
61	The lowMrphosphotyrosine protein phosphatase behaves differently when phosphorylated at Tyr131or Tyr132by Src kinase. FEBS Letters, 1999, 456, 73-78.	1.3	63
62	Thermodynamics and Kinetics of Folding of Common-Type Acylphosphatase:Â Comparison to the Highly Homologous Muscle Isoenzymeâ€. Biochemistry, 1999, 38, 2135-2142.	1.2	51
63	Sequence-specific recognition of peptide substrates by the lowMrphosphotyrosine protein phosphatase isoforms. FEBS Letters, 1998, 422, 213-217.	1.3	13
64	Expression, purification and preliminary crystal analysis of the human lowMrphosphotyrosine protein phosphatase isoform 1. FEBS Letters, 1998, 426, 52-56.	1.3	16
65	Low molecular weight phosphotyrosine protein phosphatase translocation during cell stimulation with platelet-derived growth factor. FEBS Letters, 1998, 432, 145-149.	1.3	8
66	Differentin Vitroandin VivoActivity of LowMrPhosphotyrosine Protein Phosphatase on Epidermal Growth Factor Receptor. Biochemical and Biophysical Research Communications, 1998, 250, 577-581.	1.0	5
67	C-terminal region contributes to muscle acylphosphatase three-dimensional structure stabilisation. FEBS Letters, 1996, 384, 172-176.	1.3	12
68	Properties of Cys21-mutated muscle acylphosphatases. The Protein Journal, 1996, 15, 27-34.	1.1	8
69	pp60v-arc Phosphorylates and Activates Low Molecular Weight Phosphotyrosine-protein Phosphatase. Journal of Biological Chemistry, 1996, 271, 1278-1281.	1.6	57
70	Expression, Purification, and Characterization of Acylphosphatase Muscular Isoenzyme as Fusion Protein with GlutathioneS-Transferase. Protein Expression and Purification, 1995, 6, 799-805.	0.6	28
71	Properties of N-terminus truncated and C-terminus mutated muscle acylphosphatases. FEBS Letters, 1995, 362, 175-179.	1.3	11
72	Arginine-23 is involved in the catalytic site of muscle acylphosphatase. BBA - Proteins and Proteomics, 1994, 1208, 75-80.	2.1	31

5

#	Article	IF	CITATIONS
73	Crystallisation of a low molecular weight phosphotyrosine protein phosphatase from bovine liver. FEBS Letters, 1994, 343, 107-108.	1.3	3
74	Dephosphorylation of tyrosine phosphorylated synthetic peptides by rat liver phosphotyrosine protein phosphatase isoenzymes. FEBS Letters, 1993, 326, 131-134.	1.3	61