Zhaolin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905785/publications.pdf

Version: 2024-02-01

26 papers

3,244 citations

430442 18 h-index 26 g-index

26 all docs

26 docs citations

26 times ranked

5100 citing authors

#	Article	IF	CITATIONS
1	"Porous and Yet Dense―Electrodes for Highâ€Volumetricâ€Performance Electrochemical Capacitors: Principles, Advances, and Challenges. Advanced Science, 2022, 9, e2103953.	5.6	9
2	A Grapheneâ€Coated Thermal Conductive Separator to Eliminate the Dendriteâ€Induced Local Hotspots for Stable Lithium Cycling. Advanced Energy Materials, 2022, 12, .	10.2	42
3	Zeolitic imidazole framework derived N-doped porous carbon/metal cobalt nanoparticles hybrid for oxygen electrocatalysis and rechargeable Zn–air batteries. RSC Advances, 2021, 11, 15722-15728.	1.7	8
4	Porous calcium–manganese oxide/carbon nanotube microspheres as efficient oxygen reduction catalysts for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2021, 8, 2052-2060.	3.0	10
5	Aqueous Rechargeable Multivalent Metalâ€ion Batteries: Advances and Challenges. Advanced Energy Materials, 2021, 11, 2100608.	10.2	122
6	Developing Nâ∈Rich Carbon from C ₃ N ₄ â∈Polydopamine Composites for Efficient Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 3954-3961.	1.7	4
7	Dopamine-modified carboxymethyl cellulose as an improved aqueous binder for silicon anodes in lithium-ion batteries. Electrochimica Acta, 2021, 389, 138806.	2.6	23
8	Selfâ€Assembly of Surfaceâ€Functionalized Ag _{1.8} Mn ₈ O ₁₆ Nanorods with Reduced Graphene Oxide Nanosheets as an Efficient Bifunctional Electrocatalyst for Rechargeable Zincâ€Air Batteries. Chemistry - an Asian Journal, 2021, 16, 3677-3682.	1.7	4
9	Graphite@silicon embedded in a carbon conformally coated tiny SiO ₂ nanoparticle matrix for high-performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 4395-4406.	3.0	10
10	Co3O4 nanoparticles anchored in MnO2 nanorods as efficient oxygen reduction reaction catalyst for metal-air batteries. Journal of Alloys and Compounds, 2020, 814, 152239.	2.8	28
11	Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 243-250.	9.5	244
12	Janus Electrocatalysts Containing MOF-Derived Carbon Networks and NiFe-LDH Nanoplates for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 1784-1792.	2.5	54
13	A nanostructured nickel/carbon matrix as an efficient oxygen evolution reaction electrocatalyst for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 1873-1880.	3.0	4
14	Webâ€Like Interconnected Carbon Networks from NaClâ€Assisted Pyrolysis of ZIFâ€8 for Highly Efficient Oxygen Reduction Catalysis. Small, 2018, 14, e1704169.	5.2	95
15	Zn-Air Batteries: Web-Like Interconnected Carbon Networks from NaCl-Assisted Pyrolysis of ZIF-8 for Highly Efficient Oxygen Reduction Catalysis (Small 16/2018). Small, 2018, 14, 1870070.	5.2	4
16	Improving the Electrochemical Oxygen Reduction Activity of Manganese Oxide Nanosheets with Sulfurizationâ€Induced Nanopores. ChemCatChem, 2018, 10, 422-429.	1.8	23
17	NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn–air batteries. Nanoscale, 2017, 9, 774-780.	2.8	130
18	Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. ACS Catalysis, 2016, 6, 7865-7871.	5.5	51

ZHAOLIN LIU

#	Article	IF	CITATION
19	Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. Journal of Power Sources, 2016, 332, 330-336.	4.0	129
20	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N–C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale, 2016, 8, 5067-5075.	2.8	109
21	Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis, 2015, 5, 4643-4667.	5.5	1,022
22	Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co _{0.55} Mn _{0.45}) _{0.99} O _{3â~δ} nanorod/graphene hybrid in alkaline media. Nanoscale, 2015, 7, 9046-9054.	2.8	86
23	Co ₃ O ₄ nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale, 2015, 7, 1830-1838.	2.8	226
24	Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale, 2013, 5, 7768.	2.8	426
25	Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery. Electrochimica Acta, 2013, 114, 598-604.	2.6	134
26	Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc–air batteries. Nanoscale, 2013, 5, 4657.	2.8	247