Dan Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905765/publications.pdf

Version: 2024-02-01

		76326	110387
98	4,894 citations	40	64
papers	citations	h-index	g-index
101	101	101	5793
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials, 2022, 280, 121279.	11.4	73
2	Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials, 2022, 281, 121368.	11.4	75
3	A light-driven dual-nanotransformer with deep tumor penetration for efficient chemo-immunotherapy. Theranostics, 2022, 12, 1756-1768.	10.0	27
4	A nanoparticulate dual scavenger for targeted therapy of inflammatory bowel disease. Science Advances, 2022, 8, eabj2372.	10.3	87
5	ROS-responsive fluorinated polyethyleneimine vector to co-deliver shMTHFD2 and shGPX4 plasmids induces ferroptosis and apoptosis for cancer therapy. Acta Biomaterialia, 2022, 140, 492-505.	8.3	37
6	Scalable biomimetic SARS-CoV‑2 nanovaccines with robust protective immune responses. Signal Transduction and Targeted Therapy, 2022, 7, 96.	17.1	9
7	An Injectable Antibiotic Hydrogel that Scavenges Proinflammatory Factors for the Treatment of Severe Abdominal Trauma. Advanced Functional Materials, 2022, 32, .	14.9	32
8	Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials, 2022, 7, 557-574.	48.7	187
9	A Novel Iterative PA-MRNet: Multiple Noise Suppression and Weak Signals Recovery for Downhole DAS Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	8
10	Bioactive Injectable Hydrogel Dressings for Bacteria-Infected Diabetic Wound Healing: A "Pull–Push― Approach. ACS Applied Materials & Interfaces, 2022, 14, 26404-26417.	8.0	30
11	Scavenging Tumorâ€Derived Small Extracellular Vesicles by Functionalized 2D Materials to Inhibit Tumor Regrowth and Metastasis Following Radiotherapy. Advanced Functional Materials, 2022, 32, .	14.9	8
12	Flash technology-based self-assembly in nanoformulation: Fabrication to biomedical applications. Materials Today, 2021, 42, 99-116.	14.2	35
13	Near-infrared light-responsive hybrid hydrogels for the synergistic chemo-photothermal therapy of oral cancer. Nanoscale, 2021, 13, 17168-17182.	5.6	23
14	A Cationic Metal–Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management. Nano Letters, 2021, 21, 2461-2469.	9.1	39
15	Berberine inhibits chemotherapy-exacerbated ovarian cancer stem cell-like characteristics and metastasis through GLI1. European Journal of Pharmacology, 2021, 895, 173887.	3.5	9
16	Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials, 2021, 271, 120716.	11.4	49
17	A Versatile and Robust Platform for the Scalable Manufacture of Biomimetic Nanovaccines. Advanced Science, 2021, 8, 2002020.	11.2	43
18	Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy. Small, 2021, 17, e2100006.	10.0	40

#	Article	IF	CITATIONS
19	Nanosilver-Decorated Biodegradable Mesoporous Organosilica Nanoparticles for GSH-Responsive Gentamicin Release and Synergistic Treatment of Antibiotic-Resistant Bacteria. International Journal of Nanomedicine, 2021, Volume 16, 4631-4642.	6.7	14
20	Chemoimmunotherapy: Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy (Small 26/2021). Small, 2021, 17, 2170130.	10.0	2
21	Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials, 2021, 275, 120915.	11.4	28
22	Self-Assembly Engineering Nanodrugs Composed of Paclitaxel and Curcumin for the Combined Treatment of Triple Negative Breast Cancer. Frontiers in Bioengineering and Biotechnology, 2021, 9, 747637.	4.1	10
23	Janus metallic mesoporous silica nanoparticles: Unique structures for cancer theranostics. Current Opinion in Biomedical Engineering, 2021, 19, 100294.	3.4	8
24	Targeting multiple mediators of sepsis using multifunctional tannic acid-Zn2+-gentamicin nanoparticles. Matter, 2021, 4, 3677-3695.	10.0	19
25	Noble metal-molybdenum disulfide nanohybrids as dual fluorometric and colorimetric sensor for hepatitis B virus DNA detection. Talanta, 2021, 234, 122675.	5.5	20
26	Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. Journal of Tissue Engineering, 2021, 12, 204173142098671.	5.5	29
27	Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics, 2020, 10, 1281-1295.	10.0	138
28	One-pot synthesis of chlorhexidine-templated biodegradable mesoporous organosilica nanoantiseptics. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110653.	5.0	9
29	Oral delivery of bacteria: Basic principles and biomedical applications. Journal of Controlled Release, 2020, 327, 801-833.	9.9	55
30	A Versatile Nonviral Delivery System for Multiplex Geneâ€Editing in the Liver. Advanced Materials, 2020, 32, e2003537.	21.0	45
31	Cancer–leukocyte hybrid membrane-cloaked magnetic beads for the ultrasensitive isolation, purification, and non-destructive release of circulating tumor cells. Nanoscale, 2020, 12, 19121-19128.	5.6	30
32	Biomimetic Diselenideâ€Bridged Mesoporous Organosilica Nanoparticles as an Xâ€rayâ€Responsive Biodegradable Carrier for Chemoâ€lmmunotherapy. Advanced Materials, 2020, 32, e2004385.	21.0	122
33	Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. Science Advances, 2020, 6, eaay7148.	10.3	94
34	Chemotherapy exacerbates ovarian cancer cell migration and cancer stem cell-like characteristics through GLI1. British Journal of Cancer, 2020, 122, 1638-1648.	6.4	21
35	<p>Berberine Inhibits the Apoptosis-Induced Metastasis by Suppressing the iPLA2/LOX-5/LTB4 Pathway in Hepatocellular Carcinoma</p> . OncoTargets and Therapy, 2020, Volume 13, 5223-5230.	2.0	9
36	Tannic Acid-Assisted Synthesis of Biodegradable and Antibacterial Mesoporous Organosilica Nanoparticles Decorated with Nanosilver. ACS Sustainable Chemistry and Engineering, 2020, 8, 1695-1702.	6.7	31

#	Article	IF	CITATIONS
37	Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Antiâ€Metastatic Immunotherapy. Advanced Science, 2019, 6, 1901690.	11.2	169
38	Janus Gold Triangle-Mesoporous Silica Nanoplatforms for Hypoxia-Activated Radio-Chemo-Photothermal Therapy of Liver Cancer. ACS Applied Materials & Interfaces, 2019, 11, 34755-34765.	8.0	68
39	Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomaterialia, 2019, 100, 352-364.	8.3	44
40	Depression promotes hepatocellular carcinoma progression through a glucocorticoid-mediated upregulation of PD-1 expression in tumor-infiltrating NK cells. Carcinogenesis, 2019, , .	2.8	17
41	<p>Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition</p> . International Journal of Nanomedicine, 2019, Volume 14, 3967-3982.	6.7	34
42	Engineering Cell Membraneâ€Based Nanotherapeutics to Target Inflammation. Advanced Science, 2019, 6, 1900605.	11.2	143
43	Green synthesis of carrier-free curcumin nanodrugs for light-activated breast cancer photodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2019, 180, 313-318.	5.0	49
44	Bioactive carbon dots direct the osteogenic differentiation of human bone marrow mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2019, 179, 1-8.	5 . 0	39
45	Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Glioblastoma Therapy. Nano Letters, 2019, 19, 1701-1705.	9.1	71
46	Immunotherapy: Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Antiâ€Metastatic Immunotherapy (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970136.	11.2	8
47	Noise reduction for desert seismic data using spectral kurtosis adaptive bandpass filter. Acta Geophysica, 2019, 67, 123-131.	2.0	18
48	Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10656-10663.	8.0	53
49	A comparison of mesoporous silica nanoparticles and mesoporous organosilica nanoparticles as drug vehicles for cancer therapy. Chemical Biology and Drug Design, 2018, 92, 1435-1444.	3.2	29
50	Fluorescent-magnetic Janus nanorods for selective capture and rapid identification of foodborne bacteria. Sensors and Actuators B: Chemical, 2018, 260, 1004-1011.	7.8	24
51	Berberine-based carbon dots for selective and safe cancer theranostics. RSC Advances, 2018, 8, 1168-1173.	3.6	29
52	Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials, 2018, 154, 147-157.	11.4	127
53	Cancer cell membrane-modified biodegradable mesoporous silica nanocarriers for berberine therapy of liver cancer. RSC Advances, 2018, 8, 40288-40297.	3.6	38
54	Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. International Journal of Nanomedicine, 2018, Volume 13, 7697-7709.	6.7	66

#	Article	IF	Citations
55	Gramâ€scale production of carrierâ€free fluorescent berberine microrods for selective liver cancer therapy. BioFactors, 2018, 44, 496-502.	5.4	13
56	Antibacterial and biodegradable tissue nano-adhesives for rapid wound closure. International Journal of Nanomedicine, 2018, Volume 13, 5849-5863.	6.7	43
57	Janus nanocarriers for magnetically targeted and hyperthermia-enhanced curcumin therapy of liver cancer. RSC Advances, 2018, 8, 30448-30454.	3.6	19
58	HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or <i>Natronobacterium gregoryi</i> Argonaute. Advanced Science, 2018, 5, 1700540.	11.2	78
59	Bioinspired Diselenideâ€Bridged Mesoporous Silica Nanoparticles for Dualâ€Responsive Protein Delivery. Advanced Materials, 2018, 30, e1801198.	21.0	234
60	Obesity-associated miR-27a upregulation promotes hepatocellular carcinoma metastasis through suppressing SFRP1. OncoTargets and Therapy, 2018, Volume 11, 3281-3292.	2.0	10
61	Self-assembled dual fluorescence nanoparticles for CD44-targeted delivery of anti-miR-27a in liver cancer theranostics. Theranostics, 2018, 8, 3808-3823.	10.0	41
62	Magnetic Janus nanorods for efficient capture, separation and elimination of bacteria. RSC Advances, 2017, 7, 3550-3553.	3.6	20
63	Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomaterials Science, 2017, 5, 1820-1827.	5.4	97
64	Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids and Surfaces B: Biointerfaces, 2017, 157, 199-206.	5.0	43
65	Berberine inhibits the chemotherapyâ€induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of ⟨scp⟩FAK⟨/scp⟩ in ovarian cancer. Cell Proliferation, 2017, 50, .	5.3	48
66	Janus Silver/Silica Nanoplatforms for Light-Activated Liver Cancer Chemo/Photothermal Therapy. ACS Applied Materials & Distribution (2017), 9, 30306-30317.	8.0	80
67	Janus Gold Nanoplatform for Synergetic Chemoradiotherapy and Computed Tomography Imaging of Hepatocellular Carcinoma. ACS Nano, 2017, 11, 12732-12741.	14.6	136
68	The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution. Acta Biomaterialia, 2017, 49, 531-540.	8.3	111
69	Berberineâ€loaded Janus nanocarriers for magnetic fieldâ€enhanced therapy against hepatocellular carcinoma. Chemical Biology and Drug Design, 2017, 89, 464-469.	3.2	46
70	Chemotherapy induces ovarian cancer cell repopulation through the caspase 3-mediated arachidonic acid metabolic pathway. OncoTargets and Therapy, 2017, Volume 10, 5817-5826.	2.0	20
71	Berberine Reverses Hypoxia-induced Chemoresistance in Breast Cancer through the Inhibition of AMPK- HIF- $1\hat{l}_{\pm}$. International Journal of Biological Sciences, 2017, 13, 794-803.	6.4	81
72	Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 3577-3589.	6.7	58

#	Article	IF	Citations
73	Berberine Enhances Chemosensitivity and Induces Apoptosis Through Dose-orchestrated AMPK Signaling in Breast Cancer. Journal of Cancer, 2017, 8, 1679-1689.	2.5	98
74	Janus Au–mesoporous silica nanocarriers for chemo-photothermal treatment of liver cancer cells. RSC Advances, 2016, 6, 44498-44505.	3.6	29
7 5	Enhanced osteoblast adhesion on amino-functionalized titanium surfaces through combined plasma enhanced chemical vapor deposition (PECVD) method. RSC Advances, 2016, 6, 82688-82697.	3.6	19
76	Janus "nano-bullets―for magnetic targeting liver cancer chemotherapy. Biomaterials, 2016, 100, 118-133.	11.4	137
77	Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. Journal of Materials Chemistry B, 2016, 4, 5119-5126.	5.8	204
78	Janus Silver-Mesoporous Silica Nanocarriers for SERS Traceable and pH-Sensitive Drug Delivery in Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4303-4308.	8.0	106
79	Berberine induces apoptosis by suppressing the arachidonic acid metabolic pathway in hepatocellular carcinoma. Molecular Medicine Reports, 2015, 12, 4572-4577.	2.4	58
80	Adipose tissue-secreted miR-27a promotes liver cancer by targeting FOXO1 in obese individuals. OncoTargets and Therapy, 2015, 8, 735.	2.0	37
81	MiR-27a Promotes Hepatocellular Carcinoma Cell Proliferation Through Suppression of its Target Gene Peroxisome Proliferator-activated Receptor γ. Chinese Medical Journal, 2015, 128, 941-947.	2.3	47
82	Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells. International Journal of Nanomedicine, 2015, 10, 6075.	6.7	28
83	Gold nanorods-silica Janus nanoparticles for theranostics. Applied Physics Letters, 2015, 106, .	3.3	33
84	CTAB induced mitochondrial apoptosis by activating the AMPK–p53 pathway in hepatocarcinoma cells. Toxicology Research, 2015, 4, 1359-1365.	2.1	8
85	Noninvasive theranostic imaging of HSV-TK/GCV suicide gene therapy in liver cancer by folate-targeted quantum dot-based liposomes. Biomaterials Science, 2015, 3, 833-841.	5.4	55
86	Single and repeated dose toxicity of citric acid-based carbon dots and a derivative in mice. RSC Advances, 2015, 5, 91398-91406.	3.6	25
87	Facile Synthesis of Core–shell Magnetic Mesoporous Silica Nanoparticles for <scp>pH</scp> â€sensitive Anticancer Drug Delivery. Chemical Biology and Drug Design, 2015, 86, 1548-1553.	3.2	34
88	Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells. International Journal of Biochemistry and Cell Biology, 2015, 59, 116-125.	2.8	32
89	Usnic acid induces apoptosis via an ROS-dependent mitochondrial pathway in human breast cancer cells in vitro and in vivo. RSC Advances, 2015, 5, 153-162.	3.6	34
90	Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21WAF1 pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells. Oncotarget, 2015, 6, 4253-4265.	1.8	26

#	Article	IF	CITATION
91	Selective inhibition of liver cancer growth realized by the intrinsic toxicity of a quantum dot–lipid complex. International Journal of Nanomedicine, 2014, 9, 5753.	6.7	28
92	Real-Time Visualizing and Tracing of HSV-TK/GCV Suicide Gene Therapy by Near-Infrared Fluorescent Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11082-11090.	8.0	26
93	The nanotoxicity investigation of optical nanoparticles to cultured cells in vitro. Toxicology Reports, 2014, 1, 137-144.	3.3	30
94	The Insulin-Like Growth Factor-I Receptor Inhibitor Picropodophyllin-Induced Selective Apoptosis of Hepatocellular Carcinoma Cell Through a Caspase-Dependent Mitochondrial Pathway. Oncology Research, 2014, 21, 103-110.	1.5	13
95	Celecoxib induces apoptosis via a mitochondria-dependent pathway in the H22 mouse hepatoma cell line. Molecular Medicine Reports, 2014, 10, 2093-2098.	2.4	12
96	Monitoring HSV-TK/ganciclovir cancer suicide gene therapy using CdTe/CdS core/shell quantum dots. Biomaterials, 2012, 33, 4336-4344.	11.4	42
97	Inhibitory effect of celecoxib in lung carcinoma by regulation of cyclooxygenase-2/cytosolic phospholipase A2 and peroxisome proliferator-activated receptor gamma. Molecular and Cellular Biochemistry, 2011, 355, 233-240.	3.1	18
98	Recent advances in nanomaterials for prostate cancer detection and diagnosis. Journal of Materials Chemistry B, O, , .	5.8	5