Zhen Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905482/publications.pdf

Version: 2024-02-01

19	4,776	12 h-index	19
papers	citations		g-index
20	20	20	4393
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31, 686-688.	9.4	1,657
2	Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8, 14261.	5.8	751
3	Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7, 12617.	5.8	710
4	Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System. Journal of Genetics and Genomics, 2014, 41, 63-68.	1.7	567
5	Highâ€efficiency gene targeting in hexaploid wheat using <scp>DNA</scp> replicons and <scp>CRISPR</scp> /Cas9. Plant Journal, 2017, 89, 1251-1262.	2.8	305
6	Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Molecular Plant, 2013, 6, 1365-1368.	3.9	245
7	Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols, 2018, 13, 413-430.	5.5	179
8	Current and future editing reagent delivery systems for plant genome editing. Science China Life Sciences, 2017, 60, 490-505.	2.3	124
9	From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends in Biotechnology, 2018, 36, 160-172.	4.9	63
10	Genotyping genomeâ€edited mutations in plants using <scp>CRISPR</scp> ribonucleoprotein complexes. Plant Biotechnology Journal, 2018, 16, 2053-2062.	4.1	62
11	MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Scientific Reports, 2016, 6, 32158.	1.6	44
12	Biolistic Delivery of CRISPR/Cas9 with Ribonucleoprotein Complex in Wheat. Methods in Molecular Biology, 2019, 1917, 327-335.	0.4	23
13	Efficient Genome Editing in Setaria italica Using CRISPR/Cas9 and Base Editors. Frontiers in Plant Science, 2021, 12, 815946.	1.7	13
14	An Efficient Targeted Mutagenesis System Using CRISPR/Cas in Monocotyledons. Current Protocols in Plant Biology, 2016, 1, 329-344.	2.8	9
15	CRISPR technology for abiotic stress resistant crop breeding. Plant Growth Regulation, 2021, 94, 115-129.	1.8	8
16	Testing Gene-Gene Interactions Based on a Neighborhood Perspective in Genome-wide Association Studies. Frontiers in Genetics, 2021, 12, 801261.	1.1	5
17	Bi-functional selection markers assist segregation of transgene-free, genome-edited mutants. Science China Life Sciences, 2021, 64, 1567-1570.	2.3	2
18	Maximal Information Coefficient-Based Testing to Identify Epistasis in Case-Control Association Studies. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-12.	0.7	1

ZHEN LIANG

#		Article	IF	CITATIONS
19	9	Gene-Based Testing of Interactions Using XGBoost in Genome-Wide Association Studies. Frontiers in Cell and Developmental Biology, 2021, 9, 801113.	1.8	0