Hongdong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905224/publications.pdf

Version: 2024-02-01

28 1,493 19 28 papers citations h-index g-index

28 28 28 1586

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nature Communications, 2020, 11 , 5437 .	12.8	288
2	Multi‧ites Electrocatalysis in Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2106715.	14.9	128
3	The comprehensive utilization of the synergistic effect of fullerene and non-fullerene acceptors to achieve highly efficient polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 15841-15850.	10.3	118
4	Multiâ€Site Electrocatalysts Boost pHâ€Universal Nitrogen Reduction by Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2006939.	14.9	99
5	Enhanced efficiency of polymer solar cells through synergistic optimization of mobility and tuning donor alloys by adding high-mobility conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 11015-11022.	5.5	87
6	A Highly Reversible Longâ€Life Li–CO ₂ Battery with a RuP ₂ â€Based Catalytic Cathode. Small, 2019, 15, e1803246.	10.0	80
7	Advanced Ultrathin RuPdM (M = Ni, Co, Fe) Nanosheets Electrocatalyst Boosts Hydrogen Evolution. ACS Central Science, 2019, 5, 1991-1997.	11.3	78
8	Surface oxygen-mediated ultrathin PtRuM (Ni, Fe, and Co) nanowires boosting methanol oxidation reaction. Journal of Materials Chemistry A, 2020, 8, 2323-2330.	10.3	67
9	High-performance nitrogen electroreduction at low overpotential by introducing Pb to Pd nanosponges. Applied Catalysis B: Environmental, 2020, 265, 118481.	20.2	62
10	Insights into Excitonic Dynamics of Terpolymer-Based High-Efficiency Nonfullerene Polymer Solar Cells: Enhancing the Yield of Charge Separation States. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8475-8484.	8.0	62
11	Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li–CO2 batteries. Electrochimica Acta, 2019, 299, 592-599.	5.2	55
12	Chemically coupled NiCoS/C nanocages as efficient electrocatalysts for nitrogen reduction reactions. Journal of Materials Chemistry A, 2020, 8, 543-547.	10.3	52
13	Exposure of Definite Palladium Facets Boosts Electrocatalytic Nitrogen Fixation at Low Overpotential. Advanced Energy Materials, 2020, 10, 2002131.	19.5	45
14	Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Research, 2022, 15, 3056-3064.	10.4	40
15	First achieving highly selective oxidation of aliphatic alcohols to aldehydes over photocatalysts. Journal of Materials Chemistry A, 2018, 6, 13236-13243.	10.3	35
16	Controllable synthesized CoP-MP (M=Fe, Mn) as efficient and stable electrocatalyst for hydrogen evolution reaction at all pH values. International Journal of Hydrogen Energy, 2019, 44, 19978-19985.	7.1	34
17	Two isostructural Co/Ni fluorine-containing metal-organic frameworks for dye adsorption and supercapacitor. Journal of Solid State Chemistry, 2019, 275, 1-7.	2.9	30
18	Self-supported Co(CO3)0.5(OH) \hat{A} ·0.11H2O nanoneedles coated with CoSe2-Ni3Se2 nanoparticles as highly active bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2019, 495, 143606.	6.1	23

#	Article	IF	CITATIONS
19	Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber. Nano Energy, 2019, 63, 103873.	16.0	23
20	High-efficiency methanol oxidation electrocatalysts realized by ultrathin PtRuM–O (M = Ni, Fe, Co) nanosheets. Chemical Communications, 2020, 56, 9028-9031.	4.1	19
21	Significantly enhanced electrocatalytic N ₂ reduction to NH ₃ by surface selenization with multiple functions. Journal of Materials Chemistry A, 2020, 8, 20331-20336.	10.3	16
22	A simple, rapid and scalable synthesis approach for ultra-small size transition metal selenides with efficient water oxidation performance. Journal of Materials Chemistry A, 2021, 9, 24261-24267.	10.3	16
23	Hydrothermal synthesis and electrochemical properties of 3D Zn2V2O7 microsphere for alkaline rechargeable battery. Journal of Power Sources, 2019, 439, 227087.	7.8	14
24	Ultrafast Generation of Nanostructured Noble Metal Aerogels by a Microwave Method for Electrocatalytic Hydrogen Evolution and Ethanol Oxidation. ACS Applied Nano Materials, 2021, 4, 11221-11230.	5.0	10
25	Configuration-Modulated Hot Electron Dynamics of Gold Nanorod Assemblies. Journal of Physical Chemistry Letters, 2019, 10, 6578-6583.	4.6	5
26	Coordination preference of 1,2-bis((1H-imidazole-1-yl)methyl)benzene and different carboxylate ligands with transition metal ions directed by weak interactions. Journal of Solid State Chemistry, 2019, 275, 124-130.	2.9	4
27	Catalytic Cathodes: A Highly Reversible Longâ€Life Li–CO ₂ Battery with a RuP ₂ â€Based Catalytic Cathode (Small 29/2019). Small, 2019, 15, 1970155.	10.0	2
28	Supramolecular assemblies of bi-component molecular solids formed between homopiperazine and organic acids. Journal of Molecular Structure, 2019, 1196, 828-835.	3.6	1