
Stephen A Engel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1. Journal of Neuroscience, 1996, 16, 4207-4221.	3.6	2,099
2	fMRI of human visual cortex. Nature, 1994, 369, 525-525.	27.8	896
3	Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neuroscience, 2000, 3, 1149-1152.	14.8	824
4	Interocular rivalry revealed in the human cortical blind-spot representation. Nature, 2001, 411, 195-199.	27.8	411
5	Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature, 1997, 388, 68-71.	27.8	312
6	Binocular Rivalry Requires Visual Attention. Neuron, 2011, 71, 362-369.	8.1	224
7	Selective Adaptation to Color Contrast in Human Primary Visual Cortex. Journal of Neuroscience, 2001, 21, 3949-3954.	3.6	93
8	Adaptation of Oriented and Unoriented Color-Selective Neurons in Human Visual Areas. Neuron, 2005, 45, 613-623.	8.1	92
9	Distinct mechanism for long-term contrast adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5898-5903.	7.1	87
10	Linear systems analysis of the fMRI signal. NeuroImage, 2012, 62, 975-984.	4.2	68
11	Effects of Orientation-Specific Visual Deprivation Induced with Altered Reality. Current Biology, 2009, 19, 1956-1960.	3.9	60
12	The development and use of phase-encoded functional MRI designs. NeuroImage, 2012, 62, 1195-1200.	4.2	54
13	Four Days of Visual Contrast Deprivation Reveals Limits of Neuronal Adaptation. Current Biology, 2014, 24, 2575-2579.	3.9	37
14	Cortical Thickness of Functionally Defined Visual Areas in Schizophrenia and Bipolar Disorder. Cerebral Cortex, 2017, 27, bhw151.	2.9	36
15	Mindfulness Improves Brain–Computer Interface Performance by Increasing Control Over Neural Activity in the Alpha Band. Cerebral Cortex, 2021, 31, 426-438.	2.9	33
16	The Independent and Shared Mechanisms of Intrinsic Brain Dynamics: Insights From Bistable Perception. Frontiers in Psychology, 2018, 9, 589.	2.1	32
17	Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia. Frontiers in Psychology, 2016, 7, 323.	2.1	29
18	The Best of Both Worlds: Adaptation During Natural Tasks Produces Long-Lasting Plasticity in Perceptual Ocular Dominance. Psychological Science, 2018, 29, 14-33.	3.3	28

STEPHEN A ENGEL

#	Article	IF	CITATIONS
19	fMRI evidence of aberrant neural adaptation for objects in schizophrenia and bipolar disorder. Human Brain Mapping, 2019, 40, 1608-1617.	3.6	28
20	Color Compensation in Anomalous Trichromats Assessed with fMRI. Current Biology, 2021, 31, 936-942.e4.	3.9	28
21	Frequency of alpha oscillation predicts individual differences in perceptual stability during binocular rivalry. Human Brain Mapping, 2019, 40, 2422-2433.	3.6	27
22	Nonlinearities in rapid event-related fMRI explained by stimulus scaling. NeuroImage, 2007, 34, 651-660.	4.2	26
23	Plasticity, and Its Limits, in Adult Human PrimaryÂVisual Cortex. Multisensory Research, 2015, 28, 297-307.	1.1	25
24	Neurons that detect interocular conflict during binocular rivalry revealed with EEG. Journal of Vision, 2016, 16, 18.	0.3	25
25	Deactivation in the posterior mid-cingulate cortex reflects perceptual transitions during binocular rivalry: Evidence from simultaneous EEG-fMRI. NeuroImage, 2017, 152, 1-11.	4.2	21
26	Conflict-sensitive neurons gate interocular suppression in human visual cortex. Scientific Reports, 2018, 8, 1239.	3.3	21
27	Habitual wearers of colored lenses adapt more rapidly to the color changes the lenses produce. Vision Research, 2016, 125, 41-48.	1.4	20
28	Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data. NeuroImage: Clinical, 2017, 16, 491-497.	2.7	18
29	Motion from occlusion. Journal of Vision, 2006, 6, 9.	0.3	17
30	Larger neural responses produce BOLD signals that begin earlier in time. Frontiers in Neuroscience, 2014, 8, 159.	2.8	17
31	The hard-won benefits of familiarity in visual search: naturally familiar brand logos are found faster. Attention, Perception, and Psychophysics, 2014, 76, 914-930.	1.3	17
32	SSVEP signatures of binocular rivalry during simultaneous EEG and fMRI. Journal of Neuroscience Methods, 2015, 243, 53-62.	2.5	17
33	Hemifield columns co-opt ocular dominance column structure in human achiasma. Neurolmage, 2018, 164, 59-66.	4.2	16
34	Linking optic radiation volume to visual perception in schizophrenia and bipolar disorder. Schizophrenia Research, 2017, 190, 102-106.	2.0	12
35	Augmented Reality as a Tool for Studying Visual Plasticity: 2009 to 2018. Current Directions in Psychological Science, 2019, 28, 574-580.	5.3	12
36	Long-term adaptation to color. Current Opinion in Behavioral Sciences, 2019, 30, 116-121.	3.9	12

STEPHEN A ENGEL

#	Article	IF	CITATIONS
37	Natural-scene-based Steady-state Visual Evoked Potentials Reveal Effects of Short-term Monocular Deprivation. Neuroscience, 2020, 435, 10-21.	2.3	12
38	Beneficial Effects of Spatial Remapping for Reading With Simulated Central Field Loss. , 2018, 59, 1105.		11
39	Structural and Functional Connectivity of Visual Cortex in Schizophrenia and Bipolar Disorder: A Graph-Theoretic Analysis. Schizophrenia Bulletin Open, 2020, 1, sgaa056.	1.7	10
40	Confidence Intervals for fMRI Activation Maps. PLoS ONE, 2013, 8, e82419.	2.5	9
41	Visual mode switching learned through repeated adaptation to color. ELife, 2020, 9, .	6.0	7
42	Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning. PLoS ONE, 2017, 12, e0168858.	2.5	6
43	Depth-dependent functional MRI responses to chromatic and achromatic stimuli throughout V1 and V2. Neurolmage, 2021, 226, 117520.	4.2	6
44	Stimulus rivalry and binocular rivalry share a common neural substrate. Journal of Vision, 2018, 18, 18.	0.3	5
45	Evidence for intact stimulus-specific neural adaptation for visual objects in schizophrenia and bipolar disorder: An ERP study. PLoS ONE, 2019, 14, e0221409.	2.5	5
46	Myopes experience greater contrast adaptation during reading. Vision Research, 2016, 121, 1-9.	1.4	3
47	Orientation-selective contrast adaptation measured with SSVEP. Journal of Vision, 2018, 18, 2.	0.3	3
48	Higher-Level Meta-Adaptation Mitigates Visual Distortions Produced by Lower-Level Adaptation. Psychological Science, 2020, 31, 654-662.	3.3	3
49	Visual adaptation selective for individual limbs reveals hierarchical human body representation. Journal of Vision, 2021, 21, 18.	0.3	3
50	Heritability of V1/V2/V3 surface area in the HCP 7T Retinotopy Dataset. Journal of Vision, 2019, 19, 41b.	0.3	3
51	Binocular Rivalry: A Window into Cortical Competition and Suppression. Journal of the Indian Institute of Science, 2017, 97, 477-485.	1.9	2
52	Control of visual adaptation depends upon task. PLoS ONE, 2020, 15, e0229343.	2.5	2
53	The McCollough World: Induction of orientation-contingent aftereffects with an altered-reality system. Vision Research, 2021, 184, 8-13.	1.4	1
54	Adaptation Is Slower in High Variability Environments. Journal of Vision, 2017, 17, 494.	0.3	1

STEPHEN A ENGEL

#	Article	IF	CITATIONS
55	Phase analysis of SSVEP reveals that masking delays neural response in human cortex. Journal of Vision, 2017, 17, 794.	0.3	1
56	Long-term contrast deprivation increases neural gain in early visual cortex. Journal of Vision, 2018, 18, 765.	0.3	1
57	The Fusiform Body Area Represents Spatial Relationships Between Pairs of Body Parts. Journal of Vision, 2018, 18, 408.	0.3	1
58	Evidence for the McCollough Effect in Primary Visual Cortex. Journal of Vision, 2021, 21, 2814.	0.3	0
59	High-resolution functional MRI responses to chromatic and achromatic stimuli in V1 and V2. Journal of Vision, 2021, 21, 2827.	0.3	0
60	The Modularity of Brain Dynamics: Insights from Bistable Perception. Journal of Vision, 2017, 17, 1213.	0.3	0
61	Relational Representation of Body Parts Revealed by Adaptation. Journal of Vision, 2017, 17, 1238.	0.3	0
62	Fusion breaks at extreme eye positions due to lack of adaptation in the vergence system. Journal of Vision, 2017, 17, 1155.	0.3	0
63	Contrast adaptation reduces SSVEP amplitude. Journal of Vision, 2017, 17, 485.	0.3	0
64	Later visual areas can adapt to adapted input from earlier visual areas Journal of Vision, 2018, 18, 764.	0.3	0
65	McCollough world: A novel induction method for orientation-contingent color aftereffects. Journal of Vision, 2019, 19, 72a.	0.3	0
66	Natural-scene-based SSVEPs revealed effects of short-term monocular deprivation. Journal of Vision, 2019, 19, 62d.	0.3	0
67	Underlying mechanisms of temporal dynamics in bistable perception. Journal of Vision, 2019, 19, 61c.	0.3	0
68	Surface area and cortical magnification of V1, V2, and V3 in a large sample of human observers. Journal of Vision, 2019, 19, 41a.	0.3	0
69	Uncovering the physiological locus of the McCollough Effect using fMRI. Journal of Vision, 2020, 20, 459.	0.3	0
70	Control of visual adaptation depends upon task. , 2020, 15, e0229343.		0
71	Control of visual adaptation depends upon task. , 2020, 15, e0229343.		0
72	Control of visual adaptation depends upon task. , 2020, 15, e0229343.		0

5

#	Article	IF	CITATIONS
73	Control of visual adaptation depends upon task. , 2020, 15, e0229343.		Ο
74	Control of visual adaptation depends upon task. , 2020, 15, e0229343.		0
75	Control of visual adaptation depends upon task. , 2020, 15, e0229343.		Ο