Dina H Kassem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/49046/publications.pdf

Version: 2024-02-01

759233 713466 23 517 12 21 citations h-index g-index papers 23 23 23 729 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Exosomal-long non-coding RNAs journey in colorectal cancer: Evil and goodness faces of key players. Life Sciences, 2022, 292, 120325.	4.3	47
2	Sources and Therapeutic Strategies of Mesenchymal Stem Cells in Regenerative Medicine. , 2022, , 1 -28.		16
3	Potential emerging roles of the novel adipokines adipolin/CTRP12 and meteorin-like/METRNL in obesity-osteoarthritis interplay. Cytokine, 2021, 138, 155368.	3.2	14
4	New emerging roles of the novel hepatokine SERPINB1 in type 2 diabetes mellitus: Crosstalk with \hat{l}^2 -cell dysfunction and dyslipidemia. Translational Research, 2021, 231, 1-12.	5.0	9
5	Activation of FXR modulates SOCS3/Jak2/STAT3 signaling axis in a NASH-dependent hepatocellular carcinoma animal model. Biochemical Pharmacology, 2021, 186, 114497.	4.4	19
6	Nampt/visfatin: a new player to consider for the differentiation of mesenchymal stem cells into insulin producing cells. Cytotherapy, 2021, 23, S51.	0.7	0
7	Synchronizing <i>In Silico</i> , <i>In Vitro</i> , and <i>In Vivo</i> Studies for the Successful Nose to Brain Delivery of an Anticancer Molecule. Molecular Pharmaceutics, 2021, 18, 3763-3776.	4.6	20
8	Uniting Electroceutical and Cosmeceutical Interventions in Combating Coronavirus Using Ô•Poly-l-Lysine. Scientia Pharmaceutica, 2021, 89, 2.	2.0	2
9	Novel molecular mechanisms underlying the ameliorative effect of N-acetyl-L-cysteine against l'-radiation-induced premature ovarian failure in rats. Ecotoxicology and Environmental Safety, 2020, 206, 111190.	6.0	5
10	Therapeutic efficacy of umbilical cord-derived stem cells for diabetes mellitus: a meta-analysis study. Stem Cell Research and Therapy, 2020, 11, 484.	5.5	25
11	A Novel SERPINB1 Single-Nucleotide Polymorphism Associated With Glycemic Control and \hat{I}^2 -Cell Function in Egyptian Type 2 Diabetic Patients. Frontiers in Endocrinology, 2020, 11, 450.	3.5	8
12	Mesenchymal Stem Cells and Their Extracellular Vesicles: A Potential Game Changer for the COVID-19 Crisis. Frontiers in Cell and Developmental Biology, 2020, 8, 587866.	3.7	14
13	Positively Charged Electroceutical Spun Chitosan Nanofibers Can Protect Health Care Providers From COVID-19 Infection: An Opinion. Frontiers in Bioengineering and Biotechnology, 2020, 8, 885.	4.1	32
14	Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-ϒ pathways. Toxicology, 2020, 442, 152536.	4.2	23
15	Therapeutic Potential of Wharton's Jelly Mesenchymal Stem Cells for Diabetes: Achievements and Challenges. Frontiers in Cell and Developmental Biology, 2020, 8, 16.	3.7	45
16	Wharton's Jelly MSCs: Potential Weapon to Sharpen for Our Battle against DM. Trends in Endocrinology and Metabolism, 2020, 31, 271-273.	7.1	9
17	REST-DRD2 mechanism impacts glioblastoma stem cell–mediated tumorigenesis. Neuro-Oncology, 2019, 21, 775-785.	1.2	22
18	REST overexpression in mice causes deficits in spontaneous locomotion. Scientific Reports, 2018, 8, 12083.	3.3	7

#	Article	IF	CITATIONS
19	Exendin-4 enhances the differentiation of Wharton's jelly mesenchymal stem cells into insulin-producing cells through activation of various β-cell markers. Stem Cell Research and Therapy, 2016, 7, 108.	5 . 5	29
20	Association of expression levels of pluripotency/stem cell markers with the differentiation outcome of Wharton's jelly mesenchymal stem cells into insulin producing cells. Biochimie, 2016, 127, 187-195.	2.6	7
21	Mir-21–Sox2 Axis Delineates Glioblastoma Subtypes with Prognostic Impact. Journal of Neuroscience, 2015, 35, 15097-15112.	3.6	53
22	Isolation of wharton's jelly mesenchymal stem cells and their differentiation to insulin producing cells. Cytotherapy, 2014, 16, S65-S66.	0.7	1
23	Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2011, 60, 63-70.	3.4	110