
Hirotsugu Hiramatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4903904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resonance <scp>hyperâ€Raman</scp> spectroscopy of deoxythymidine monophosphate. Journal of the Chinese Chemical Society, 2022, 69, 60-65.	0.8	5
2	Detailed Raman analysis of protein denaturation using vertical flow method and programmable pump. , 2022, , .		0
3	Unique nonâ€resonance hyperâ€Raman bands of glucose in phosphateâ€buffered saline. Journal of Raman Spectroscopy, 2022, 53, 1845-1847.	1.2	2
4	Sampling unit for efficient signal detection and application to liquid chromatography-Raman spectroscopy. New Journal of Chemistry, 2021, 45, 4128-4134.	1.4	1
5	Hydrogelâ€Stiffening and Nonâ€Cell Adhesive Properties of Amphiphilic Peptides with Central Alkylene Chains. Chemistry - A European Journal, 2021, 27, 9295-9301.	1.7	7
6	Hydrogelâ€Stiffening and Nonâ€Cell Adhesive Properties of Amphiphilic Peptides with Central Alkylene Chains. Chemistry - A European Journal, 2021, 27, 9197-9197.	1.7	0
7	Regulation of Cell Volume by Nanosecond Pulsed Electric Fields. Journal of Physical Chemistry B, 2021, 125, 10692-10700.	1.2	6
8	532â€nmâ€excited hyperâ€Raman spectroscopy of amino acids. Journal of Raman Spectroscopy, 2021, 52, 641-654.	1.2	13
9	Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration. Nature Communications, 2021, 12, 6623.	5.8	26
10	The 532â€nmâ€excited hyperâ€Raman spectroscopy of globular protein and aromatic amino acids. Journal of Raman Spectroscopy, 2020, 51, 274-278.	1.2	22
11	Time-resolved FTIR study on the structural switching of human galectin-1 by light-induced disulfide bond formation. Physical Chemistry Chemical Physics, 2020, 22, 1137-1144.	1.3	6
12	Online Liquid Chromatography–Raman Spectroscopy Using the Vertical Flow Method. Analytical Chemistry, 2020, 92, 14601-14607.	3.2	7
13	Linear, mixed-valent homocatenated tri-tin complexes featuring Sn–Sn bonds. Chemical Communications, 2020, 56, 6786-6789.	2.2	7
14	pH-controlled stacking direction of the \hat{l}^2 -strands in peptide fibrils. Scientific Reports, 2020, 10, 22199.	1.6	5
15	A Vertical Flow Method for Sensitive Raman Protein Measurement in Aqueous Solutions. Analytical Chemistry, 2019, 91, 9806-9812.	3.2	8
16	Application of IR spectra of two successive isotope labeled residues to the evaluation of dihedral angles of polyproline II structure. Chemical Physics Letters, 2019, 718, 27-31.	1.2	1
17	Tautomer Structures in Ketose–Aldose Transformation of 1,3-Dihydroxyacetone Studied by Infrared Electroabsorption Spectroscopy. Journal of Physical Chemistry B, 2019, 123, 10663-10671.	1.2	7
18	Evaluation of Dihedral Angles of Peptides Using IR Bands of Two Successive Isotope Labeled Residues. Bulletin of the Chemical Society of Japan, 2019, 92, 80-86.	2.0	1

#	Article	IF	CITATIONS
19	Electric field effects on 1-hydroxyacetone revealed by IR electroabsorption spectroscopy. Chemical Physics Letters, 2019, 714, 18-23.	1.2	1
20	Preparation and photo-induced activities of water-soluble amyloid β-C60 complexes. RSC Advances, 2018, 8, 17847-17853.	1.7	9
21	Directly Probing Intermolecular Structural Change of a Core Fragment of β ₂ -Microglobulin Amyloid Fibrils with Low-Frequency Raman Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 490-496.	1.2	7
22	Change in the structure and function of lectin by photodissociation of NO. Chemical Communications, 2017, 53, 10014-10017.	2.2	3
23	The EMBO Workshop Transducing Glycan Information into Function: Lessons from and for Galectins. Trends in Glycoscience and Glycotechnology, 2017, 29, E47-E47.	0.0	Ο
24	Effects of Nâ€Methylated Amyloidâ€ <i>β</i> _{30–40} Peptides on the Fibrillation of Amyloidâ€ <i>β</i> _{1–40} . Chemical Biology and Drug Design, 2016, 87, 425-433.	1.5	4
25	Generation of self-clusters of galectin-1 in the farnesyl-bound form. Scientific Reports, 2016, 6, 32999.	1.6	4
26	Citrullination and deamidation affect aggregation properties of amyloid β -proteins. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2016, 23, 234-241.	1.4	16
27	The Extinction Coefficient of N-Methylated Aβ30–40 Depends on the Position of N-Methylation. Chemistry Letters, 2015, 44, 35-37.	0.7	1
28	Vertical flow apparatus for enhancement and efficient collection of Raman signal. Journal of Raman Spectroscopy, 2014, 45, 208-210.	1.2	11
29	Characterization of Intermolecular Structure of β ₂ -Microglobulin Core Fragments in Amyloid Fibrils by Vacuum-Ultraviolet Circular Dichroism Spectroscopy and Circular Dichroism Theory. Journal of Physical Chemistry B, 2014, 118, 2785-2795.	1.2	21
30	β-Galactoside-binding activity of human galectin-1 at basic pH. Chemical Physics, 2013, 419, 113-117.	0.9	2
31	Enhancement of Proton Transport in an Oriented Polypeptide Thin Film. Langmuir, 2013, 29, 6798-6804.	1.6	28
32	Involvement of Histidine Residues in the pH-Dependent β-Galactoside Binding Activity of Human Galectin-1. Biochemistry, 2013, 52, 2371-2380.	1.2	14
33	Structural Instability and Cu-Dependent Pro-Oxidant Activity Acquired by the Apo Form of Mutant SOD1 Associated with Amyotrophic Lateral Sclerosis. Biochemistry, 2011, 50, 4242-4250.	1.2	20
34	The β-Sheet Structure pH Dependence of the Core Fragments of β2-Microglobulin Amyloid Fibrils. Bulletin of the Chemical Society of Japan, 2010, 83, 495-504.	2.0	14
35	Role of His16 in the structural flexibility of the C-terminal region of human endothelin-1. Journal of Molecular Structure, 2010, 976, 328-332.	1.8	1
36	Effects of conformation and hydrogen bonding on the CC and NCN stretching Raman bands of <i>N</i> â€deuterated histidinium. Journal of Raman Spectroscopy, 2010, 41, 1708-1713.	1.2	7

HIROTSUGU HIRAMATSU

#	Article	IF	CITATIONS
37	Differences in the Molecular Structure of β ₂ -Microglobulin between Two Morphologically Different Amyloid Fibrils. Biochemistry, 2010, 49, 742-751.	1.2	21
38	Evidence for the Cationâ^ï€ Interaction between Cu ²⁺ and Tryptophan. Journal of the American Chemical Society, 2008, 130, 15266-15267.	6.6	111
39	Electronic Properties in a Five-Coordinate Azido Complex of Nonplanar Iron(III) Porphyrin: Revisiting to Quantum Mechanical Spin Admixing. Bulletin of the Chemical Society of Japan, 2008, 81, 136-141.	2.0	13
40	Magnetic and Infrared Properties of the Azide Complex of (2,7,12,17-Tetrapropylporphycenato)iron(III): A Novel Admixing Mechanism of theS = 5/2 andS = 3/2 States. European Journal of Inorganic Chemistry, 2007, 2007, 3188-3194.	1.0	27
41	Structure and Dipole Moments of the Two Distinct Solvated Forms ofp-Nitroaniline in Acetonitrile/CCl4As Studied by Infrared Electroabsorption Spectroscopy. Journal of Physical Chemistry A, 2006, 110, 3738-3743.	1.1	21
42	Significance of the Molecular Shape of Iron Corrphycene in a Protein Pocket. Inorganic Chemistry, 2006, 45, 4238-4242.	1.9	14
43	Structure of Interacting Segments in the Growing Amyloid Fibril of β2-Microglobulin Probed with IR Spectroscopy. Journal of Molecular Biology, 2006, 362, 355-364.	2.0	9
44	Amyloid Fibril Structure Elucidated from IR Microscope. Seibutsu Butsuri, 2006, 46, 98-101.	0.0	0
45	FT-IR approaches on amyloid fibril structure. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1753, 100-107.	1.1	118
46	Structural Model of the Amyloid Fibril Formed by β2-Microglobulin #21â^'31 Fragment Based on Vibrational Spectroscopy. Journal of the American Chemical Society, 2005, 127, 7988-7989.	6.6	37
47	Core Structure of Amyloid Fibril Proposed from IR-Microscope Linear Dichroism. Journal of the American Chemical Society, 2004, 126, 3008-3009.	6.6	49
48	Development of Infrared Electroabsorption Spectroscopy and its Application to Molecular Structural Studies. Applied Spectroscopy, 2004, 58, 355-366.	1.2	28
49	Infrared Electroabsorption Spectroscopic Study of Association Structures of 5CB in the Solution, Isotropic Liquid and Nematic Liquid Crystal States. Chemistry Letters, 2002, 31, 68-69.	0.7	5
50	Association structures of N-methylacetamide in solution studied by infrared electroabsorption spectroscopy. Chemical Physics Letters, 2002, 361, 457-464.	1.2	20
51	Development of infrared electroabsorption spectroscopy for liquids. Chemical Physics Letters, 2001, 347, 403-409.	1.2	19