Catherine Passirani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/490349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials, 2008, 29, 3477-3496.	5.7	737
2	Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 2006, 27, 4356-4373.	5.7	669
3	Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials, 2009, 30, 2302-2318.	5.7	262
4	Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials, 2010, 31, 8393-8401.	5.7	208
5	A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials, 2013, 34, 6429-6443.	5.7	181
6	Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials, 2006, 27, 108-118.	5.7	178
7	Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 5 157
8	The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine, 2010, 5, 1415-1433.	1.7	147
9	Passive and Active Tumour Targeting with Nanocarriers. Current Drug Discovery Technologies, 2011, 8, 188-196.	0.6	144
10	Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl) Tj ETQq0 0 0 rgBT /Ove	rlock 10 7 2.0	rf 50 382 Td 128
11	Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. Journal of Controlled Release, 2008, 130, 146-153.	4.8	113
12	Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials, 2010, 31, 321-329.	5.7	110
13	Non-viral nanosystems for systemic siRNA delivery. Pharmacological Research, 2010, 62, 100-114.	3.1	100
14	Transferrin Adsorption onto PLGA Nanoparticles Governs Their Interaction with Biological Systems from Blood Circulation to Brain Cancer Cells. Pharmaceutical Research, 2012, 29, 1495-1505.	1.7	95
15	Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. International Journal of Pharmaceutics, 2011, 403, 201-206.	2.6	85
16	Novel metal-based anticancer drugs: a new challenge in drug delivery. Current Opinion in Pharmacology, 2012, 12, 420-426.	1.7	78
17	Electrokinetic properties of noncharged lipid nanocapsules: Influence of the dipolar distribution at the interface. Electrophoresis, 2005, 26, 2066-2075.	1.3	77
18	Nanomedicine to target multidrug resistant tumors. Drug Resistance Updates, 2020, 52, 100704.	6.5	73

CATHERINE PASSIRANI

#	Article	IF	CITATIONS
19	Influence of size, surface coating and fine chemical composition on the in vitro reactivity and in vivo biodistribution of lipid nanocapsules versus lipid nanoemulsions in cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 375-387.	1.7	70
20	The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy. Biomaterials, 2011, 32, 2106-2116.	5.7	69
21	Pegylated Nanocapsules Produced by an Organic Solvent-Free Method: Evaluation of their Stealth Properties. Pharmaceutical Research, 2006, 23, 2190-2199.	1.7	67
22	Active Targeting Strategies for Anticancer Drug Nanocarriers. Current Drug Delivery, 2012, 9, 255-268.	0.8	67
23	Treatment of 9L Gliosarcoma in Rats by Ferrociphenol-Loaded Lipid Nanocapsules Based on a Passive Targeting Strategy via the EPR Effect. Pharmaceutical Research, 2011, 28, 3189-3198.	1.7	62
24	FRET Imaging Approaches for <i>in Vitro</i> and <i>in Vivo</i> Characterization of Synthetic Lipid Nanoparticles. Molecular Pharmaceutics, 2014, 11, 3133-3144.	2.3	62
25	The encapsulation of DNA molecules within biomimetic lipid nanocapsules. Biomaterials, 2009, 30, 3197-3204.	5.7	61
26	Local Delivery of Ferrociphenol Lipid Nanocapsules Followed by External Radiotherapy as a Synergistic Treatment Against Intracranial 9L Glioma Xenograft. Pharmaceutical Research, 2010, 27, 56-64.	1.7	54
27	Positively-Charged, Porous, Polysaccharide Nanoparticles Loaded with Anionic Molecules Behave as †Stealth' Cationic Nanocarriers. Pharmaceutical Research, 2010, 27, 126-133.	1.7	48
28	Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. International Journal of Pharmaceutics, 2012, 423, 63-68.	2.6	48
29	Brain tumour targeting strategies via coated ferrociphenol lipid nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 690-693.	2.0	46
30	pHâ€Responsive Flowerâ€Type Micelles Formed by a Biotinylated Poly(2â€vinylpyridine)â€ <i>block</i> â€poly(ethylene oxide)â€ <i>block</i> â€poly(<i>ε</i> â€caprolactone) Tribl Copolymer. Advanced Functional Materials, 2009, 19, 1416-1425.	ock8	45
31	An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors. Scientific Reports, 2016, 6, 21417.	1.6	44
32	Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease. Biomaterials, 2016, 83, 347-362.	5.7	44
33	Tumor transfection after systemic injection of DNA lipid nanocapsules. Biomaterials, 2011, 32, 2327-2333.	5.7	43
34	The inÂvivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer. Biomaterials, 2013, 34, 6949-6956.	5.7	43
35	Polyglutamic acid–PEG nanocapsules as long circulating carriers for the delivery of docetaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 47-54.	2.0	39
36	Inhibition of ectopic glioma tumor growth by a potent ferrocenyl drug loaded into stealth lipid nanocapsules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1667-1677.	1.7	38

CATHERINE PASSIRANI

#	Article	IF	CITATIONS
37	Efficient ferrocifen anticancer drug and Bcl-2 gene therapy using lipid nanocapsules on human melanoma xenograft in mouse. Pharmacological Research, 2017, 126, 54-65.	3.1	37
38	Administration-dependent efficacy of ferrociphenol lipid nanocapsules for the treatment of intracranial 9L rat gliosarcoma. International Journal of Pharmaceutics, 2012, 423, 55-62.	2.6	36
39	Synthetic vectors for gene delivery: An overview of their evolution depending on routes of administration Biotechnology Journal, 2015, 10, 1370-1389.	1.8	33
40	Surface modification of lipid nanocapsules with polysaccharides: From physicochemical characteristics to in vivo aspects. Acta Biomaterialia, 2013, 9, 6686-6693.	4.1	32
41	siRNA LNCs – A novel platform of lipid nanocapsules for systemic siRNA administration. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 448-452.	2.0	30
42	Serum-stable, long-circulating paclitaxel-loaded colloidal carriers decorated with a new amphiphilic PEG derivative. International Journal of Pharmaceutics, 2012, 426, 231-238.	2.6	29
43	Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma. Biotechnology Journal, 2014, 9, 1389-1401.	1.8	29
44	In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. International Journal of Pharmaceutics, 2012, 423, 108-115.	2.6	28
45	Enhanced and preferential internalization of lipid nanocapsules into human glioblastoma cells: effect of a surface-functionalizing NFL peptide. Nanoscale, 2018, 10, 13485-13501.	2.8	26
46	Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacological Research, 2017, 126, 31-53.	3.1	25
47	Development and evaluation of injectable nanosized drug delivery systems for apigenin. International Journal of Pharmaceutics, 2017, 532, 757-768.	2.6	25
48	Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules. International Journal of Nanomedicine, 2015, 10, 1259.	3.3	21
49	EGFR siRNA lipid nanocapsules efficiently transfect glioma cells in vitro. International Journal of Pharmaceutics, 2013, 454, 748-755.	2.6	20
50	DNA Nanocarriers for Systemic Administration: Characterization and In Vivo Bioimaging in Healthy Mice. Molecular Therapy - Nucleic Acids, 2013, 2, e64.	2.3	20
51	Dodecyl creatine ester and lipid nanocapsule: a double strategy for the treatment of creatine transporter deficiency. Nanomedicine, 2015, 10, 185-191.	1.7	19
52	Ferrocifen Loaded Lipid Nanocapsules: A Promising Anticancer Medication against Multidrug Resistant Tumors. Cancers, 2021, 13, 2291.	1.7	16
53	Self-assembled biotransesterified cyclodextrins as potential Artemisinin nanocarriers. II: In vitro behavior toward the immune system and in vivo biodistribution assessment of unloaded nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 683-694.	2.0	15
54	Nucleic-Acid Delivery Using Lipid Nanocapsules. Current Pharmaceutical Biotechnology, 2016, 17, 723-727.	0.9	15

CATHERINE PASSIRANI

#	Article	IF	CITATIONS
55	Modulating undruggable targets to overcome cancer therapy resistance. Drug Resistance Updates, 2022, 60, 100788.	6.5	15
56	Treatment efficacy of DNA lipid nanocapsules and DNA multimodular systems after systemic administration in a human glioma model. Journal of Gene Medicine, 2012, 14, 769-775.	1.4	13
57	Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements. RSC Advances, 2019, 9, 27264-27278.	1.7	11
58	pH-Responsive Lipid Nanocapsules: A Promising Strategy for Improved Resistant Melanoma Cell Internalization. Cancers, 2021, 13, 2028.	1.7	11
59	p722 ferrocifen loaded lipid nanocapsules improve survival of murine xenografted-melanoma via a potentiation of apoptosis and an activation of CD8+ T lymphocytes. International Journal of Pharmaceutics, 2021, 593, 120111.	2.6	10
60	Lipid nanocapsules for intracellular delivery of microRNA: A first step towards intervertebral disc degeneration therapy. International Journal of Pharmaceutics, 2022, 624, 121941.	2.6	10
61	Photochemical Properties and Activity of Waterâ€Soluble Polymer/C ₆₀ Nanohybrids for Photodynamic Therapy. Macromolecular Bioscience, 2013, 13, 106-115.	2.1	4
62	Lipid Nanocapsules in Nanomedicine. , 2011, , .		1
63	Brain Tumors: Convection-Enhanced Delivery of Drugs (Method). , 2011, , 207-216.		0