Shahrokh Shahhosseini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4903220/publications.pdf

Version: 2024-02-01

74 papers

1,919 citations

201674 27 h-index 302126 39 g-index

74 all docs

74 docs citations

times ranked

74

1480 citing authors

#	Article	IF	CITATIONS
1	Performance optimization of an industrial natural gas dehydration process to reduce energy consumption and greenhouse gases (<scp>GHGs</scp>) emission. Canadian Journal of Chemical Engineering, 2022, 100, 476-490.	1.7	3
2	Ultrasound assisted oxidative desulfurization of a model fuel using a deep eutectic solvent: Optimization and experimental design. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108724.	3.6	4
3	Eco-Friendly Deep Eutectic Solvents Blended with Diethanolamine Solution for Postcombustion CO ₂ Capture. Energy & Samp; Fuels, 2022, 36, 945-957.	5.1	10
4	Investigation of the ultrasound assisted CO2 absorption using different absorbents. Chemical Engineering Research and Design, 2021, 149, 277-288.	5.6	20
5	An experimental investigation on the oxidative desulfurization of a mineral lubricant base oil. Journal of Environmental Health Science & Engineering, 2021, 19, 1951-1968.	3.0	4
6	Insights Into the Mass Transfer Mechanisms of Nanofluids: A CO ₂ Absorption Study. Energy & Study. 2017. 20184.	5.1	7
7	Optimization of a continuous ultrasound assisted oxidative desulfurization (UAOD) process of diesel using response surface methodology (RSM) considering operating cost. Chinese Journal of Chemical Engineering, 2020, 28, 1384-1396.	3.5	23
8	Optimization of Extractive Desulfurization of Diesel Oil in a Continuous Oldshue–Rushton Column Pilot Plant. Energy & Samp; Fuels, 2020, 34, 1041-1052.	5.1	15
9	A study on the effects of textural properties of \hat{I}^3 -Al2O3 support on CO2 capture capacity of Na2CO3. Chemical Engineering Research and Design, 2020, 138, 176-185.	5.6	12
10	Regeneration of different extractive solvents for the oxidative desulfurization process: An experimental investigation. Chemical Engineering Research and Design, 2020, 139, 191-200.	5.6	22
11	Optimization of oxidative polymerization-desulfurization of a model fuel using polyoxometalate: Effect of ultrasound irradiation. Journal of Industrial and Engineering Chemistry, 2019, 80, 576-589.	5.8	20
12	High CO ₂ Adsorption on Amine-Functionalized Improved Mesoporous Silica Nanotube as an Eco-Friendly Nanocomposite. Energy & Energy & Samp; Fuels, 2019, 33, 5384-5397.	5.1	80
13	A novel multi-probe continuous flow ultrasound assisted oxidative desulfurization reactor; experimental investigation and simulation. Ultrasonics Sonochemistry, 2019, 56, 264-273.	8.2	23
14	A Deep Analytical Study in the Oxidation Polymerization Desulfurization Process Using a Keggin-Type Polyoxometalate Catalyst: Characterization of Solid and Liquid Products. Russian Journal of Applied Chemistry, 2019, 92, 1291-1305.	0.5	2
15	Hydrodynamic and mass transfer investigation of oxidative desulfurization of a model fuel using an ultrasound horn reactor. Ultrasonics Sonochemistry, 2019, 52, 77-87.	8.2	25
16	A new empirical model for estimation of crude oil/brine interfacial tension using genetic programming approach. Journal of Petroleum Science and Engineering, 2019, 173, 187-196.	4.2	18
17	SEPARATION OF SULFUR-CONTAINING COMPOUNDS FROM DIESEL BY OXIDATION FOLLOWED BY SOLVENT EXTRACTION IN A SINGLE DROP COLUMN. Brazilian Journal of Chemical Engineering, 2019, 36, 1343-1355.	1.3	7
18	Effect of operating pressure on the performance of ultrasound-assisted oxidative desulfurization (UAOD) using a horn type sonicator: Experimental investigation and CFD simulation. Chemical Engineering and Processing: Process Intensification, 2018, 132, 75-88.	3.6	29

#	Article	IF	Citations
19	Optimization of CO ₂ Capture from Simulated Flue Gas Using K ₂ CO ₃ /Al ₂ O ₃ in a Micro Fluidized Bed Reactor. Energy & Damp; Fuels, 2018, 32, 7978-7990.	5.1	21
20	Optimization of CO ₂ Capture Process from Simulated Flue Gas by Dry Regenerable Alkali Metal Carbonate Based Adsorbent Using Response Surface Methodology. Energy &	5.1	52
21	Experimental investigation and modeling of viscosity effect on carbon dioxide absorption using sodium hydroxide. Journal of Environmental Chemical Engineering, 2017, 5, 2597-2604.	6.7	8
22	Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase. Ultrasonics Sonochemistry, 2017, 39, 611-622.	8.2	34
23	Rapid oxidation of dibenzothiophene in model fuel under ultrasound irradiation. Monatshefte FÃ $^1\!\!/\!\!\!\!/$ r Chemie, 2017, 148, 387-396.	1.8	31
24	CFD study of the flow pattern in an ultrasonic horn reactor: Introducing a realistic vibrating boundary condition. Ultrasonics Sonochemistry, 2017, 35, 359-374.	8.2	39
25	Experimental evaluation and modeling of liquid jet penetration to estimate droplet size in a three-phase riser reactor. Chinese Journal of Chemical Engineering, 2016, 24, 293-309.	3 . 5	2
26	Chemical absorption of CO ₂ into an aqueous piperazine (PZ) solution: development and validation of a rigorous dynamic rate-based model. RSC Advances, 2016, 6, 40017-40032.	3.6	43
27	Some notes on process intensification of amine based gas sweetening process for better temperature distribution in contactor to reduce the amount of amine as a result of corrosion and foaming. Journal of Loss Prevention in the Process Industries, 2016, 41, 169-177.	3.3	11
28	A novel PFBHE (periodic fluidized bed heat exchanger): Introduction and preliminary performance evaluation. Energy, 2016, 107, 443-452.	8.8	4
29	Optimization of ultrasound-assisted oxidative desulfurization of high sulfur kerosene using response surface methodology (RSM). Clean Technologies and Environmental Policy, 2016, 18, 2677-2689.	4.1	46
30	Feedâ€Splitting as Energyâ€Saving Technique in the Heterogeneous Distillation of Ethanol–Water Azeotropes. Energy Technology, 2016, 4, 424-428.	3.8	9
31	The effect of particle properties on the heat transfer characteristics of a liquid–solid fluidized bed heat exchanger. International Journal of Thermal Sciences, 2016, 102, 111-121.	4.9	20
32	Experimental investigation of CO2 capture using sodium hydroxide particles in a fluidized bed. Korean Journal of Chemical Engineering, 2016, 33, 1278-1285.	2.7	20
33	Experimental investigation of dispersed phase holdup and flooding characteristics in a multistage column extractor. Chemical Engineering Research and Design, 2016, 105, 177-187.	5.6	37
34	Experimental mass transfer coefficients in a pilot plant multistage column extractor. Chinese Journal of Chemical Engineering, 2016, 24, 989-999.	3.5	18
35	Simulation of CO 2 capture using sodium hydroxide solid sorbent in a fluidized bed reactor by a multi-layer perceptron neural network. Journal of Natural Gas Science and Engineering, 2016, 31, 305-312.	4.4	15
36	Unified new correlation for prediction of dispersed phase holdup in agitated extraction columns. Separation and Purification Technology, 2016, 158, 275-285.	7.9	24

#	Article	IF	CITATIONS
37	Holdup, characteristic velocity and slip velocity between two phases in a multi-impeller column for high/medium/low interfacial tension systems. Chemical Engineering and Processing: Process Intensification, 2016, 100, 65-78.	3.6	26
38	Waste fish oil (WFO) esterification catalyzed by sulfonated activated carbon under ultrasound irradiation. Applied Thermal Engineering, 2016, 94, 141-150.	6.0	38
39	The effects of operating parameters on stage efficiency in an Oldshue-Rushton column. Chemical Industry and Chemical Engineering Quarterly, 2016, 22, 75-83.	0.7	8
40	Effects of Restitution and Specularity Coefficients on Solid‣iquid Fluidized BedÂHydrodynamics. Chemical Engineering and Technology, 2015, 38, 1827-1836.	1.5	15
41	A Novel Method for Evaluation of the Flow Field Effects on Mean Drop Size in a Multiphase CFB. International Journal of Chemoinformatics and Chemical Engineering, 2015, 4, 13-36.	0.1	O
42	Dynamic heat and mass transfer modeling and control in carbon dioxide reactive absorption process. Heat and Mass Transfer, 2015, 51, 1131-1140.	2.1	10
43	CO 2 chemical absorption into aqueous solutions of piperazine: modeling of kinetics and mass transfer rate. Journal of Natural Gas Science and Engineering, 2015, 26, 1059-1067.	4.4	31
44	Mass transfer performance in an Oldshue–Rushton column extractor. Chemical Engineering Research and Design, 2015, 100, 104-112.	5.6	22
45	Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm. Journal of Natural Gas Science and Engineering, 2015, 24, 18-25.	4.4	39
46	Removal of carbonate and oxalate pollutants in the Bayer process using thermal and chemical techniques. Hydrometallurgy, 2015, 154, 137-148.	4.3	20
47	Using maximum entropy approach for prediction of drop size distribution in a pilot plant multi-impeller extraction contactor. RSC Advances, 2015, 5, 95967-95980.	3.6	20
48	Computational and experimental investigation of CO2 capture in gas–solid bubbling fluidized bed. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 421-430.	5.3	28
49	Electrocoalescence of binary water droplets falling in oil: Experimental study. Chemical Engineering Research and Design, 2014, 92, 2694-2704.	5.6	33
50	Design and simulation of ethane recovery process in an extractive dividing wall column. Journal of Cleaner Production, 2014, 72, 222-229.	9.3	34
51	Numerical Study of the Collision and Coalescence of Water Droplets in an Electric Field. Chemical Engineering and Technology, 2014, 37, 27-35.	1.5	24
52	Numerical prediction of the electrical waveform effect on electrocoalescence kinetic. Chemical Engineering Research and Design, 2013, 91, 904-918.	5.6	21
53	Optimal design of drainage channel geometry parameters in vane demister liquid–gas separators. Chemical Engineering Research and Design, 2013, 91, 1212-1222.	5.6	46
54	Characterization of Ag(I), Co(II) and Cu(II) removal process from aqueous solutions using dolomite powder. Korean Journal of Chemical Engineering, 2013, 30, 172-180.	2.7	29

#	Article	IF	Citations
55	Numerical investigation of the application of high temperature air combustion in an industrial furnace. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226, 694-705.	1.4	3
56	Experimental and modeling of CO2 capture by dry sodium hydroxide carbonation. Chemical Engineering Research and Design, 2012, 90, 2041-2050.	5.6	32
57	Direct numerical simulation of water droplet coalescence in the oil. International Journal of Heat and Fluid Flow, 2012, 36, 58-71.	2.4	54
58	Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique. Chemical Engineering Research and Design, 2012, 90, 938-949.	5.6	32
59	CFD modeling of fouling in crude oil pre-heaters. Energy Conversion and Management, 2012, 64, 344-350.	9.2	40
60	Numerical Investigation of a MILD Combustion Burner: Analysis of Mixing Field, Chemical Kinetics and Turbulence-Chemistry Interaction. Flow, Turbulence and Combustion, 2012, 88, 597-623.	2.6	107
61	Simulation study of droplet vaporization effects on gas–solid fluidized bed. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 419-427.	5.3	14
62	CFD analysis of hydrodynamic, heat transfer and reaction of three phase riser reactor. Chemical Engineering Research and Design, 2011, 89, 978-989.	5.6	45
63	Investigation of catalyst particle hydrodynamic and heat transfer in three phase flow circulating fluidized bed. International Communications in Heat and Mass Transfer, 2011, 38, 100-109.	5.6	8
64	KINETICS AND ABSORPTION RATE OF CO ₂ INTO PARTIALLY CARBONATED AMMONIA SOLUTIONS. Chemical Engineering Communications, 2011, 198, 1169-1181.	2.6	14
65	CFD simulation of hydrodynamics and heat transfer in gas phase ethylene polymerization reactors. International Communications in Heat and Mass Transfer, 2010, 37, 437-442.	5.6	27
66	Modeling gas oil spray coalescence and vaporization in gas solid riser reactor. International Communications in Heat and Mass Transfer, 2010, 37, 935-943.	5.6	16
67	A methodology for modeling batch reactors using generalized dynamic neural networks. Chemical Engineering Journal, 2010, 159, 195-202.	12.7	32
68	Neuro-based formulation to predict fouling threshold in crude preheaters. International Communications in Heat and Mass Transfer, 2009, 36, 525-531.	5.6	23
69	Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions. Chemical Engineering Journal, 2009, 149, 110-117.	12.7	36
70	NONEQUILIBRIUM MODELING OF REACTIVE ABSORPTION PROCESSES. Chemical Engineering Communications, 2009, 196, 1076-1089.	2.6	10
71	Evaluation of ANN modeling for prediction of crude oil fouling behavior. Applied Thermal Engineering, 2008, 28, 668-674.	6.0	57
72	CFD modeling of hydrodynamic and heat transfer in fluidized bed reactors. International Communications in Heat and Mass Transfer, 2008, 35, 357-368.	5.6	104

#	Article	IF	CITATIONS
73	CFD based evaluation of polymer particles heat transfer coefficient in gas phase polymerization reactors. International Communications in Heat and Mass Transfer, 2008, 35, 1375-1379.	5.6	13
74	Simulation and optimisation of PHB production in fed-batch culture of Ralstonia eutropha. Process Biochemistry, 2004, 39, 963-969.	3.7	50