Ahmed F M El-Mahdy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4903151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, characterization, and photophysical properties of some new thieno[2,3â€ <i>b</i>]pyridines bearing phenylethenyl moiety. Journal of Heterocyclic Chemistry, 2022, 59, 359-370.	2.6	5
2	Metal Complexes of the Porphyrin-Functionalized Polybenzoxazine. Polymers, 2022, 14, 449.	4.5	7
3	A pyridinyl-phenanzine conjugated microporous polymer decorated with ultrafine Ag nanoparticles mediates the rapid reduction of nitrophenol. Microporous and Mesoporous Materials, 2022, 331, 111669.	4.4	18
4	Advances in porous organic polymers: syntheses, structures, and diverse applications. Materials Advances, 2022, 3, 707-733.	5.4	140
5	Covalent triazine frameworks based on triphenylpyridine building block for high-performance supercapacitor and selective CO2 capture. Materials Chemistry and Physics, 2022, 281, 125850.	4.0	18
6	Solvent polarity tuning to enhance the crystallinity of 2D-covalent organic frameworks for visible-light-driven hydrogen generation. Journal of Materials Chemistry A, 2022, 10, 12378-12390.	10.3	43
7	Ultrastable carbazole-tethered conjugated microporous polymers for high-performance energy storage. Microporous and Mesoporous Materials, 2022, 333, 111766.	4.4	10
8	Triphenylamine-based conjugated microporous polymers as dye adsorbents and supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104310.	5.3	14
9	Carbazole-conjugated microporous polymers from Suzuki–Miyaura coupling for supercapacitors. Polymer, 2022, 254, 125070.	3.8	14
10	Donor-acceptor carbazole-based conjugated microporous polymers as photocatalysts for visible-light-driven H2 and O2 evolution from water splitting. Applied Catalysis B: Environmental, 2022, 316, 121624.	20.2	46
11	Ultrastable luminescent hybrid microporous polymers based on polyhedral oligomeric silsesquioxane for CO2 uptake and metal ion sensing. Microporous and Mesoporous Materials, 2021, 311, 110695.	4.4	66
12	Secondary Structures of Polypeptide-Based Diblock Copolymers Influence the Microphase Separation of Templates for the Fabrication of Microporous Carbons. Macromolecules, 2021, 54, 1030-1042.	4.8	43
13	Triptycene-based discontinuously-conjugated covalent organic polymer photocatalysts for visible-light-driven hydrogen evolution from water. Applied Catalysis B: Environmental, 2021, 285, 119802.	20.2	63
14	Pyrene-containing conjugated organic microporous polymers for photocatalytic hydrogen evolution from water. Catalysis Science and Technology, 2021, 11, 2229-2241.	4.1	87
15	A Tröger's Base-Derived Covalent Organic Polymer Containing Carbazole Units as a High-Performance Supercapacitor. Polymers, 2021, 13, 1385.	4.5	32
16	Porous organic/inorganic polymers based on double-decker silsesquioxane for high-performance energy storage. Journal of Polymer Research, 2021, 28, 1.	2.4	22
17	High-Performance Supercapacitor Electrodes Prepared From Dispersions of Tetrabenzonaphthalene-Based Conjugated Microporous Polymers and Carbon Nanotubes. ACS Applied Materials & Interfaces, 2021, 13, 51906-51916.	8.0	88
18	Synthesis of multiple heteroatom–doped mesoporous carbon/silica composites for supercapacitors. Chemical Engineering Journal, 2021, 414, 128796.	12.7	57

Ahmed F M El-Mahdy

#	Article	IF	CITATIONS
19	Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 2021, 6, 100054.	5.1	142
20	Synthesis, characterization, and biological activities of some novel thienylpyrido[3′,2′:4,5]thieno[3,2―d]pyrimidines and related heterocycles. Journal of Heterocyclic Chemistry, 2021, 58, 1784-1801.	2.6	6
21	Sulfur-doped triazine-conjugated microporous polymers for achieving the robust visible-light-driven hydrogen evolution. Chemical Engineering Journal, 2021, 421, 129825.	12.7	66
22	Carbazole- and thiophene-containing conjugated microporous polymers with different planarity for enhanced photocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 11968-11971.	4.1	37
23	One-Pot Synthesis of Some New <i>s</i> -Triazole Derivatives and Their Potential Application for Water Decontamination. ACS Omega, 2021, 6, 25574-25584.	3.5	7
24	Designed azo-linked conjugated microporous polymers for CO2 uptake and removal applications. Journal of Polymer Research, 2021, 28, 1.	2.4	19
25	Tunable Pyridyl-Based Conjugated Microporous Polymers for Visible Light-Driven Hydrogen Evolution. ACS Applied Energy Materials, 2021, 4, 13140-13151.	5.1	24
26	(<i>E</i>)-1,2-Diphenylethene-based conjugated nanoporous polymers for a superior adsorptive removal of dyes from water. New Journal of Chemistry, 2021, 45, 21834-21843.	2.8	14
27	Photoresponsive Azobenzene Materials Based on Pyridine-Functionalized Benzoxazines as Surface Relief Gratings. ACS Applied Polymer Materials, 2020, 2, 791-804.	4.4	17
28	Hypercrosslinked porous organic polymers based on tetraphenylanthraquinone for CO2 uptake and high-performance supercapacitor. Polymer, 2020, 205, 122857.	3.8	53
29	Multifunctional Hypercrosslinked Porous Organic Polymers Based on Tetraphenylethene and Triphenylamine Derivatives for High-Performance Dye Adsorption and Supercapacitor. Polymers, 2020, 12, 2426.	4.5	36
30	Covalent Organic Frameworks: Dualâ€Function Fluorescent Covalent Organic Frameworks: HCl Sensing and Photocatalytic H ₂ Evolution from Water(Advanced Optical Materials 18/2020). Advanced Optical Materials, 2020, 8, 2070074.	7.3	2
31	Heteroporous bifluorenylidene-based covalent organic frameworks displaying exceptional dye adsorption behavior and high energy storage. Journal of Materials Chemistry A, 2020, 8, 25148-25155.	10.3	66
32	A highly fluorescent covalent organic framework as a hydrogen chloride sensor: roles of Schiff base bonding and π-stacking. Journal of Materials Chemistry C, 2020, 8, 9520-9528.	5.5	96
33	Synthesis of Schiff and Mannich bases of news-triazole derivatives and their potential applications for removal of heavy metals from aqueous solution and as antimicrobial agents. RSC Advances, 2020, 10, 20184-20194.	3.6	16
34	High-Molecular-Weight PLA-b-PEO-b-PLA Triblock Copolymer Templated Large Mesoporous Carbons for Supercapacitors and CO2 Capture. Polymers, 2020, 12, 1193.	4.5	20
35	Dualâ€Function Fluorescent Covalent Organic Frameworks: HCl Sensing and Photocatalytic H ₂ Evolution from Water. Advanced Optical Materials, 2020, 8, 2000641.	7.3	97
36	Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units. Microporous and Mesoporous Materials, 2020, 300, 110151.	4.4	35

#	Article	IF	CITATIONS
37	Direct synthesis of nitrogen-doped mesoporous carbons from triazine-functionalized resol for CO2 uptake and highly efficient removal of dyes. Journal of Hazardous Materials, 2020, 391, 122163.	12.4	77
38	Ultrastable conductive microporous covalent triazine frameworks based on pyrene moieties provide high-performance CO ₂ uptake and supercapacitance. New Journal of Chemistry, 2020, 44, 8241-8253.	2.8	49
39	Nitrogen-Doped microporous carbons derived from azobenzene and nitrile-functionalized polybenzoxazines for CO2 uptake. Materials Today Communications, 2020, 24, 101111.	1.9	23
40	Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 11448-11459.	10.3	88
41	A Convenient One-Pot and Rapid Microwave-Assisted Synthesis of Biologically Active s-Triazolo[3,4-b][1,3,4]Thiadiazine and s-Triazolo[3,4-b][1,3,4]Thiadiazole Nanoarchitectonics. Journal of Nanoscience and Nanotechnology, 2020, 20, 2917-2929.	0.9	3
42	Synthesis of [3â€~+â€~3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 199-208.	5.3	57
43	Bio-inspired multiple complementary hydrogen bonds enhance the miscibility of conjugated polymers blended with polystyrene derivatives. Journal of Polymer Research, 2019, 26, 1.	2.4	7
44	Direct Synthesis of Microporous Bicarbazoleâ€Based Covalent Triazine Frameworks for Highâ€Performance Energy Storage and Carbon Dioxide Uptake. ChemPlusChem, 2019, 84, 1767-1774.	2.8	48
45	Convenient One-Pot Four-Component Synthesis of 6,8-Disubstituted-5,6,7,8-tetrahydropyrimido[4,5-d]pyrimidin-4(3H)-ones via a Triple Mannich Reaction. Australian Journal of Chemistry, 2019, 72, 542.	0.9	5
46	Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Applied Materials & Interfaces, 2019, 11, 9343-9354.	8.0	178
47	A Hollow Microtubular Triazine―and Benzobisoxazoleâ€Based Covalent Organic Framework Presenting Spongeâ€Like Shells That Functions as a Highâ€Performance Supercapacitor. Chemistry - an Asian Journal, 2019, 14, 1429-1435.	3.3	76
48	Ultrastable tetraphenyl- <i>p</i> -phenylenediamine-based covalent organic frameworks as platforms for high-performance electrochemical supercapacitors. Chemical Communications, 2019, 55, 14890-14893.	4.1	78
49	Triazine-functionalized covalent benzoxazine framework for direct synthesis of N-doped microporous carbon. Polymer Chemistry, 2019, 10, 6010-6020.	3.9	59
50	Direct synthesis of poly(benzoxazine imide) from an ortho-benzoxazine: its thermal conversion to highly cross-linked polybenzoxazole and blending with poly(4-vinylphenol). Polymer Chemistry, 2018, 9, 1815-1826.	3.9	56
51	Diphenylpyrenylamine-functionalized polypeptides: secondary structures, aggregation-induced emission, and carbon nanotube dispersibility. RSC Advances, 2018, 8, 15266-15281.	3.6	10
52	A pyrene-functionalized polytyrosine exhibiting aggregation-induced emission and capable of dispersing carbon nanotubes and hydrogen bonding with P4VP. Polymer, 2018, 156, 10-21.	3.8	11
53	An Efficient One-Pot Synthesis of Benzo[1,4]Thiazines, Benzo[1,3]Thiazoles and Benzo[1,5]Thiazepines. Current Organic Synthesis, 2017, 14, 604-611.	1.3	7
54	An efficient and rapid intramolecular cyclization of a quadruple Mannich reaction for one-pot synthesis of pentaazaphenalenes and their antimicrobial activities. RSC Advances, 2016, 6, 92134-92143.	3.6	5

Ahmed F M El-Mahdy

#	Article	IF	CITATIONS
55	Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants. Scientific Reports, 2015, 5, 10323.	3.3	7
56	Delivery of siRNA using siRNA/cationic vector complexes encapsulated in dendrimer-like polymeric DNAs. RSC Advances, 2015, 5, 32775-32785.	3.6	5
57	Facile preparation of streptavidin-coated sephadex beads and their application to chemiluminescence detection of a target DNA. Mikrochimica Acta, 2015, 182, 495-503.	5.0	2
58	Dendrimer-like polymeric DNAs as chemiluminescence probes for amplified detection of telomere DNA on a solid-phase membrane. Chemical Communications, 2014, 50, 859-861.	4.1	20
59	One pot synthesis and reactions of novel 5-amino[1,3]thiazolo[3,2-b][1,2,4]triazoles. Arkivoc, 2011, 2011, 71-84.	0.5	19
60	Intramolecular cyclization of Mannich reaction for synthesis of pyrimido[2,1-b]-1,3,5-tiadiazines. Journal of Heterocyclic Chemistry, 2010, 47, 1294-1302.	2.6	15
61	Novel Method for the Synthesis of s-Triazolo[3,4-b][1,3,4]thiadiazines. Synthesis, 2010, 2010, 2636-2642.	2.3	16
62	A water-soluble copper-immobilized covalent organic framework functioning as an "OFF–ON― fluorescent sensor for amino acids. Materials Advances, 0, , .	5.4	23
63	Studies on synthesis and reactions of some new five and six-membered heterocycles bearing 5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidin-4(3H)-ones skeleton. Synthetic Communications, 0, , 1-15.	2.1	0