Lief E Fenno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4903092/publications.pdf

Version: 2024-02-01

38 13,149 29 38 papers citations h-index g-index

40 40 40 16609 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. Cell, 2022, 185, 654-671.e22.	13.5	52
2	Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. Journal of Neuroscience, 2021, 41, 4840-4849.	1.7	15
3	Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron, 2021, 109, 3823-3837.e6.	3 . 8	31
4	Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins. Cell Reports, 2021, 37, 109975.	2.9	33
5	Distinct Signaling by Ventral Tegmental Area Glutamate, GABA, and Combinatorial Glutamate-GABA Neurons in Motivated Behavior. Cell Reports, 2020, 32, 108094.	2.9	60
6	A Molecular Calcium Integrator Reveals a Striatal Cell Type Driving Aversion. Cell, 2020, 183, 2003-2019.e16.	13.5	40
7	Comprehensive Dual- and Triple-Feature Intersectional Single-Vector Delivery of Diverse Functional Payloads to Cells of Behaving Mammals. Neuron, 2020, 107, 836-853.e11.	3.8	93
8	Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science, 2020, 367, 1372-1376.	6.0	132
9	Mapping Brain-Wide Afferent Inputs of Parvalbumin-Expressing GABAergic Neurons in Barrel Cortex Reveals Local and Long-Range Circuit Motifs. Cell Reports, 2019, 28, 3450-3461.e8.	2.9	52
10	A hypothalamus-habenula circuit controls aversion. Molecular Psychiatry, 2019, 24, 1351-1368.	4.1	111
11	Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26332-26342.	3.3	118
12	Excitation of Diverse Classes of Cholecystokinin Interneurons in the Basal Amygdala Facilitates Fear Extinction. ENeuro, 2019, 6, ENEURO.0220-19.2019.	0.9	30
13	Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature, 2018, 561, 349-354.	13.7	67
14	Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature, 2018, 561, 343-348.	13.7	93
15	Next-generation probes, particles, and proteins for neural interfacing. Science Advances, 2017, 3, e1601649.	4.7	377
16	The central amygdala controls learning in the lateral amygdala. Nature Neuroscience, 2017, 20, 1680-1685.	7.1	159
17	Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 2017, 357, 1149-1155.	6.0	233
18	A Guide to Creating and Testing New INTRSECT Constructs. Current Protocols in Neuroscience, 2017, 80, 4.39.1-4.39.24.	2.6	25

#	Article	IF	Citations
19	Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in <i>CNTNAP2</i> -deficient mice. Science Translational Medicine, 2017, 9, .	5.8	252
20	Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms. Cell Reports, 2017, 19, 2130-2142.	2.9	150
21	Midbrain circuits for defensive behaviour. Nature, 2016, 534, 206-212.	13.7	546
22	Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot075598.	0.2	7
23	Chronic Optogenetic Activation Augments AÎ 2 Pathology in a Mouse Model of Alzheimer Disease. Cell Reports, 2015, 11, 859-865.	2.9	186
24	Natural Neural Projection Dynamics Underlying Social Behavior. Cell, 2014, 157, 1535-1551.	13.5	1,121
25	Optogenetic neuronal stimulation promotes functional recovery after stroke. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12913-12918.	3.3	169
26	Targeting cells with single vectors using multiple-feature Boolean logic. Nature Methods, 2014, 11, 763-772.	9.0	427
27	A new mode of corticothalamic transmission revealed in the Gria4â^'/â^' model of absence epilepsy. Nature Neuroscience, 2011, 14, 1167-1173.	7.1	159
28	Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 2011, 477, 171-178.	13.7	2,036
29	The Microbial Opsin Family of Optogenetic Tools. Cell, 2011, 147, 1446-1457.	13.5	471
30	Optogenetics in Neural Systems. Neuron, 2011, 71, 9-34.	3.8	1,629
31	The Development and Application of Optogenetics. Annual Review of Neuroscience, 2011, 34, 389-412.	5.0	1,567
32	SNCA Triplication Parkinson's Patient's iPSC-derived DA Neurons Accumulate \hat{l}_{\pm} -Synuclein and Are Susceptible to Oxidative Stress. PLoS ONE, 2011, 6, e26159.	1.1	257
33	Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature, 2011, 471, 358-362.	13.7	1,073
34	Microbial Opsins: A Family of Single-Component Tools for Optical Control of Neural Activity. Cold Spring Harbor Protocols, 2011, 2011, top102.	0.2	38
35	Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature, 2010, 465, 788-792.	13.7	659
36	Lee et al. reply. Nature, 2010, 468, E4-E5.	13.7	3

#	Article	IF	CITATIONS
37	Temporally precise in vivo control of intracellular signalling. Nature, 2009, 458, 1025-1029.	13.7	653
38	Human embryonic stem cells: emerging technologies and practical applications. Current Opinion in Genetics and Development, 2008, 18, 324-329.	1.5	21