Kirstin Alberi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4902567/publications.pdf

Version: 2024-02-01

933447 839539 25 548 10 18 citations h-index g-index papers 25 25 25 1089 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	High Mobility Cd ₃ As ₂ (112) on GaAs(001) Substrates Grown via Molecular Beam Epitaxy. ACS Applied Electronic Materials, 2022, 4, 729-734.	4.3	4
2	Epitaxial Dirac Semimetal Vertical Heterostructures for Advanced Device Architectures. Advanced Functional Materials, 2022, 32, .	14.9	11
3	Quantitative orderâ€parameter measurement in latticeâ€mismatched AllnP using precession electron diffraction. Journal of Microscopy, 2021, 284, 132-141.	1.8	O
4	The 2019 materials by design roadmap. Journal Physics D: Applied Physics, 2019, 52, 013001.	2.8	236
5	Experimental demonstration of voltage-matched two-terminal tandem minimodules. Journal of Photonics for Energy, 2019, 8, 1.	1.3	3
6	Controlling ZnSe/GaAs interface properties: The role of elemental exposure and photon irradiation during growth initiation. Journal of Applied Physics, 2018, 124, .	2.5	4
7	Effects of excess carriers on charged defect concentrations in wide bandgap semiconductors. Journal of Applied Physics, 2018, 123, .	2.5	7
8	Low-Cost CdTe/Silicon Tandem Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1767-1772.	2.5	26
9	Tailoring Heterovalent Interface Formation with Light. Scientific Reports, 2017, 7, 8516.	3.3	10
10	Demonstration of GalnP2/Si Voltage Matched Tandem Solar Cells. , 2017, , .		4
11	Simulated potential for enhanced performance of mechanically stacked hybrid III–V/Si tandem photovoltaic modules using DC–DC converters. Journal of Photonics for Energy, 2017, 7, 1.	1.3	12
12	Spectroscopic determination of the bandgap crossover composition in MBE-grown Al <i></i> Als. Japanese Journal of Applied Physics, 2015, 54, 042402.	1.5	4
13	Amber-green light-emitting diodes using order-disorder Al <i>x</i> ln1â^' <i>x</i> P heterostructures. Journal of Applied Physics, 2013, 114, .	2.5	30
14	Dislocation-limited open circuit voltage in film crystal silicon solar cells. Applied Physics Letters, 2012, 101, 123510.	3.3	6
15	Heteroepitaxial film crystal silicon on Al2O3: new route to inexpensive crystal silicon photovoltaics. Energy and Environmental Science, 2011, 4, 3346.	30.8	33
16	Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics. Thin Solid Films, 2011, 519, 4545-4550.	1.8	38
17	Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells. Applied Physics Letters, 2011, 99, 064101.	3.3	34
18	On the bandgap of hydrogenated nanocrystalline silicon thin films. , 2010, , .		6

#	Article	IF	CITATION
19	Material quality requirements for efficient epitaxial film silicon solar cells. Applied Physics Letters, 2010, 96, 073502.	3.3	43
20	Mechanisms controlling the phase and dislocation density in epitaxial silicon films grown from silane below 800 A°C. Applied Physics Letters, 2010, 96, .	3.3	23
21	Photovoltaic device characterization with optical second harmonic generation. , 2010, , .		1
22	Photovoltaic-quality silicon epitaxy by hot-wire CVD at glasscompatible temperatures., 2009,,.		0
23	Epitaxial film silicon solar cells fabricated by hot wire chemical vapor deposition below 750°C., 2009, , .		0
24	Composition dependence of Schottky barrier heights and bandgap energies of GaNxAs1â^'x synthesized by ion implantation and pulsed-laser melting. Journal of Applied Physics, 2008, 104, .	2.5	11
25	Design and Demonstration of AlxIn1-xP Multiple Quantum Well Light-Emitting Diodes. Journal Physics D: Applied Physics, 0, , .	2.8	2