Xiaoming Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4902106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preferential Co substitution on Ni sites in Ni–Fe oxide arrays enabling large-current-density alkaline oxygen evolution. Chemical Science, 2022, 13, 7332-7340.	3.7	7
2	Thermally activated carbon–nitrogen vacancies in double-shelled NiFe Prussian blue analogue nanocages for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12734-12745.	5.2	25
3	Oriented-Redox Induced Uniform MnO ₂ Coating on Ni ₃ S ₂ Nanorod Arrays as a Stable Anode for Enhanced Performances of Lithium Ion Battery. Langmuir, 2020, 36, 13555-13562.	1.6	10
4	Multi-shelled Ni6MnO8 hollow microspheres for high-performance supercapacitors. Materials Research Express, 2020, 7, 065502.	0.8	3
5	CoP Microscale Prism-like Superstructure Arrays on Ni Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Inorganic Chemistry, 2020, 59, 8522-8531.	1.9	38
6	Surface-Restructured Core/Shell NiO@Co ₃ O ₄ Nanocomposites as Efficient Catalysts for the Oxygen Evolution Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 16581-16587.	1.8	18
7	A fluoride ion-mediated continuous etching–redeposition strategy to synthesize Si nanocomposites with appropriate SiO ₂ coating layers for Li-ion batteries. Chemical Communications, 2018, 54, 12447-12450.	2.2	16
8	Sequential precipitation induced interdiffusion: a general strategy to synthesize microtubular materials for high performance lithium ion battery electrodes. Journal of Materials Chemistry A, 2018, 6, 18430-18437.	5.2	12
9	Stepwise co-precipitation to the synthesis of urchin-like NiCo2O4 hollow nanospheres as high performance anode material. Journal of Applied Electrochemistry, 2018, 48, 1095-1104.	1.5	9
10	Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765, 489-496.	2.8	22
11	Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material. Electrochimica Acta, 2017, 236, 171-179.	2.6	75
12	Hydrolysis-Coupled Redox Reaction to 3D Cu/Fe ₃ O ₄ Nanorod Array Electrodes for High-Performance Lithium-Ion Batteries. Inorganic Chemistry, 2017, 56, 7657-7667.	1.9	17
13	Ultrathin Nitrogenâ€Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. ChemElectroChem, 2017, 4, 369-375.	1.7	32
14	A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. Journal of Alloys and Compounds, 2016, 685, 949-956.	2.8	42
15	Kinetically Controlled Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ Micro- and Nanostructured Hollow Spheres as High-Rate Cathode Materials for Lithium Ion Batteries. Industrial & Engineering Chemistry Research, 2016, 55, 9352-9361.	1.8	25
16	A General and Mild Approach to Controllable Preparation of Manganeseâ€Based Micro―and Nanostructured Bars for High Performance Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 3667-3671.	7.2	89
17	A General and Mild Approach to Controllable Preparation of Manganeseâ€Based Micro―and Nanostructured Bars for High Performance Lithiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 3731-3735.	1.6	5
18	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	15.6	623

XIAOMING FAN

#	Article	IF	CITATIONS
19	3D Porous Nâ€Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahighâ€Rate and Longâ€Life Li–O ₂ Batteries. Advanced Functional Materials, 2015, 25, 6913-6920.	7.8	231
20	Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology, 2015, 26, 374003.	1.3	63
21	Facile Fabrication of Bicomponent CoO/CoFe ₂ O ₄ â€Nâ€Doped Graphene Hybrids with Ultrahigh Lithium Storage Capacity. Particle and Particle Systems Characterization, 2015, 32, 91-97.	1.2	25
22	Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors. Advanced Functional Materials, 2015, 25, 2109-2116.	7.8	230
23	Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale, 2015, 7, 5120-5125.	2.8	151
24	Polystyrene sphere-mediated ultrathin graphene sheet-assembled frameworks for high-power density Li–O ₂ batteries. Chemical Communications, 2015, 51, 13233-13236.	2.2	35
25	Thermodynamically Stable Pickering Emulsion Configured with Carbon-Nanotube-Bridged Nanosheet-Shaped Layered Double Hydroxide for Selective Oxidation of Benzyl Alcohol. ACS Applied Materials & Interfaces, 2015, 7, 12203-12209.	4.0	53
26	Monolithic Electrodes: Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors (Adv. Funct. Mater. 14/2015). Advanced Functional Materials, 2015, 25, 2203-2203.	7.8	2
27	A Layeredâ€Nanospaceâ€Confinement Strategy for the Synthesis of Twoâ€Dimensional Porous Carbon Nanosheets for Highâ€Rate Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1401761.	10.2	308
28	Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale, 2015, 7, 1791-1795.	2.8	88
29	Supercapacitors: 3D Architecture Materials Made of NiCoAl-LDH Nanoplates Coupled with NiCo-Carbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors (Adv. Energy Mater. 18/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	2
30	Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon, 2014, 70, 130-141.	5.4	171
31	Preparation of Single-Walled Carbon Nanotubes from Fullerene Waste Soot. ACS Sustainable Chemistry and Engineering, 2014, 2, 14-18.	3.2	10
32	Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon. Nanoscale, 2014, 6, 3097-3104.	2.8	176
33	3D Architecture Materials Made of NiCoAlâ€LDH Nanoplates Coupled with NiCo arbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors. Advanced Energy Materials, 2014, 4, 1400761.	10.2	251
34	Hierarchical Carbonâ€Encapsulated Iron Nanoparticles as a Magnetically Separable Adsorbent for Removing Thiophene in Liquid Fuel. Particle and Particle Systems Characterization, 2013, 30, 637-644.	1.2	18
35	Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 12033.	5.2	78
36	Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. Journal of Materials Chemistry A, 2013, 1, 1963-1968.	5.2	193

#	Article	IF	CITATIONS
37	Adsorptive Removal of Thiophenic Compounds from Oils by Activated Carbon Modified with Concentrated Nitric Acid. Energy & amp; Fuels, 2013, 27, 1499-1505.	2.5	67
38	Hydrothermal Synthesis of Phosphate-Functionalized Carbon Nanotube-Containing Carbon Composites for Supercapacitors with Highly Stable Performance. ACS Applied Materials & Interfaces, 2013, 5, 2104-2110.	4.0	107