Bernhard Gentner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/490184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting the ANG2/TIE2 Axis Inhibits Tumor Growth and Metastasis by Impairing Angiogenesis and Disabling Rebounds of Proangiogenic Myeloid Cells. Cancer Cell, 2011, 19, 512-526.	16.8	543
2	Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nature Biotechnology, 2007, 25, 1457-1467.	17.5	539
3	Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 2014, 510, 235-240.	27.8	517
4	CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, 2013, 122, 3461-3472.	1.4	306
5	Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods, 2009, 6, 63-66.	19.0	301
6	Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nature Medicine, 2019, 25, 603-611.	30.7	253
7	miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell, 2016, 29, 214-228.	16.8	216
8	Attenuation of miR-126 Activity Expands HSC InÂVivo without Exhaustion. Cell Stem Cell, 2012, 11, 799-811.	11.1	197
9	MicroRNA-124 Is a Subventricular Zone Neuronal Fate Determinant. Journal of Neuroscience, 2012, 32, 8879-8889.	3.6	191
10	Identification of Hematopoietic Stem Cell–Specific miRNAs Enables Gene Therapy of Globoid Cell Leukodystrophy. Science Translational Medicine, 2010, 2, 58ra84.	12.4	180
11	Perioperative complications in patients undergoing major liver resection with or without neoadjuvant chemotherapy. Journal of Gastrointestinal Surgery, 2003, 7, 1082-1088.	1.7	171
12	miR-142-3p Prevents Macrophage Differentiation during Cancer-Induced Myelopoiesis. Immunity, 2013, 38, 1236-1249.	14.3	127
13	Efficient ExÂVivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy. Stem Cell Reports, 2017, 8, 977-990.	4.8	124
14	A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood, 2013, 122, 243-252.	1.4	102
15	Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood, 2003, 101, 2191-2198.	1.4	92
16	Genetic Engineering of Hematopoiesis for Targeted IFN-α Delivery Inhibits Breast Cancer Progression. Science Translational Medicine, 2014, 6, 217ra3.	12.4	86
17	Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells. Cell Stem Cell, 2018, 23, 820-832.e9.	11.1	86
18	Regulated and Multiple miRNA and siRNA Delivery Into Primary Cells by a Lentiviral Platform. Molecular Therapy, 2009, 17, 1039-1052.	8.2	83

Bernhard Gentner

#	Article	IF	CITATIONS
19	Hematopoietic Stem- and Progenitor-Cell Gene Therapy for Hurler Syndrome. New England Journal of Medicine, 2021, 385, 1929-1940.	27.0	75
20	NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood, 2017, 130, 606-618.	1.4	71
21	Dual-regulated Lentiviral Vector for Gene Therapy of X-linked Chronic Granulomatosis. Molecular Therapy, 2014, 22, 1472-1483.	8.2	59
22	miRNA-126 Orchestrates an Oncogenic Program in B Cell Precursor Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 29, 905-921.	16.8	57
23	Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Molecular Medicine, 2017, 9, 1198-1211.	6.9	56
24	The galactocerebrosidase enzyme contributes to the maintenance of a functional hematopoietic stem cell niche. Blood, 2010, 116, 1857-1866.	1.4	50
25	Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11602-11607.	7.1	42
26	Interferon gene therapy reprograms the leukemia microenvironment inducing protective immunity to multiple tumor antigens. Nature Communications, 2018, 9, 2896.	12.8	39
27	Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches. Italian Journal of Pediatrics, 2018, 44, 130.	2.6	38
28	microRNA-125 distinguishes developmentally generated and adult-born olfactory bulb interneurons. Development (Cambridge), 2014, 141, 1580-1588.	2.5	34
29	Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced <i>in vivo</i> homing capacity compared to plerixafor alone. Haematologica, 2017, 102, e120-e124.	3.5	33
30	A Double-Switch Vector System Positively Regulates Transgene Expression by Endogenous microRNA Expression (miR-ON Vector). Molecular Therapy, 2013, 21, 934-946.	8.2	31
31	Exploiting <scp>microRNA</scp> regulation for genetic engineering. Tissue Antigens, 2012, 80, 393-403.	1.0	30
32	Dynamic Activity of miR-125b and miR-93 during Murine Neural Stem Cell Differentiation In Vitro and in the Subventricular Zone Neurogenic Niche. PLoS ONE, 2013, 8, e67411.	2.5	30
33	A microRNA-Based System for Selecting and Maintaining the Pluripotent State in Human Induced Pluripotent Stem Cells. Stem Cells, 2011, 29, 1684-1695.	3.2	29
34	Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15038.	4.1	29
35	Genetic Testing for Germline Mutations of the APC Gene in Patients With Apparently Sporadic Desmoid Tumors but a Family History of Colorectal Carcinoma. Diseases of the Colon and Rectum, 2005, 48, 1275-1281.	1.3	28
36	MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia. Experimental Hematology, 2015, 43, 858-868.e7.	0.4	28

#	Article	IF	CITATIONS
37	MicroRNA-126–mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13410-13415.	7.1	27
38	Proâ€inflammatory cytokines favor the emergence of ETV6â€RUNX1â€positive preâ€leukemic cells in a model of mesenchymal niche. British Journal of Haematology, 2020, 190, 262-273.	2.5	25
39	Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis. Haematologica, 2020, 106, 74-86.	3.5	20
40	Hematopoietic stem cell gene therapy for IFNÎ ³ R1 deficiency protects mice from mycobacterial infections. Blood, 2018, 131, 533-545.	1.4	19
41	Acute myeloid leukaemia niche regulates response to Lâ€asparaginase. British Journal of Haematology, 2019, 186, 420-430.	2.5	18
42	Targeting a Pre-existing Anti-transgene T Cell Response for Effective Gene Therapy of MPS-I in the Mouse Model of the Disease. Molecular Therapy, 2019, 27, 1215-1227.	8.2	17
43	Hematopoietic Tumors in a Mouse Model of X-linked Chronic Granulomatous Disease after Lentiviral Vector-Mediated Gene Therapy. Molecular Therapy, 2021, 29, 86-102.	8.2	17
44	Engineered tumor-infiltrating macrophages as gene delivery vehicles for interferon-α activates immunity and inhibits breast cancer progression. Oncolmmunology, 2014, 3, e28696.	4.6	16
45	Lentiviral Vector Gene Therapy Protects XCGD Mice From Acute Staphylococcus aureus Pneumonia and Inflammatory Response. Molecular Therapy, 2016, 24, 1873-1880.	8.2	14
46	Clonal Analysis of Individual Marrow-Repopulating Cells after Experimental Peripheral Blood Progenitor Cell Transplantation. Stem Cells, 2004, 22, 570-579.	3.2	13
47	MicroRNA-127-3p controls murine hematopoietic stem cell maintenance by limiting differentiation. Haematologica, 2019, 104, 1744-1755.	3.5	13
48	Myeloid cellâ€based delivery of IFNâ€Î³ reprograms the leukemia microenvironment and induces antiâ€ŧumoral immune responses. EMBO Molecular Medicine, 2021, 13, e13598.	6.9	13
49	Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Scientific Reports, 2017, 7, 9473.	3.3	9
50	Assessing the Impact of Cyclosporin A on Lentiviral Transduction and Preservation of Human Hematopoietic Stem Cells in Clinically RelevantEx VivoGene Therapy Settings. Human Gene Therapy, 2019, 30, 1133-1146.	2.7	8
51	Peripheral blood stem and progenitor cell collection in pediatric candidates for exÂvivo gene therapy: a 10-year series. Molecular Therapy - Methods and Clinical Development, 2021, 22, 76-83.	4.1	8
52	Elderly patients > 65 years of age with acute myeloid leukemia and normal karyotype benefit from intensive therapeutic programs. American Journal of Hematology, 2016, 91, E302-3.	4.1	2
53	CD14 positive cells accelerate hematopoietic stem cell engraftment. Bone Marrow Transplantation, 2022, 57, 942-948.	2.4	2
54	Evidence of treatment benefits in patients with MPSI-Hurler in long-term follow up using a new MRI scoring system. Journal of Pediatrics, 2021, , .	1.8	1

#	Article	IF	CITATIONS
55	Enriched MicroRNA-126 Bioactivity Marks the Primitive Compartment In AML and Regulates LSC Numbers. Blood, 2010, 116, 94-94.	1.4	1