
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4901720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431, 170-173.	13.7	2,737
2	Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 2009, 162, 616-645.	6.5	1,369
3	Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320, 13-41.	4.1	1,006
4	Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3â~δ oxygen membrane. Journal of Membrane Science, 2000, 172, 177-188.	4.1	983
5	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	23.0	770
6	Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chemistry of Materials, 2016, 28, 1691-1697.	3.2	635
7	Recent Progress in Metalâ€Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Advanced Science, 2017, 4, 1600371.	5.6	594
8	Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research, 2009, 43, 2419-2430.	5.3	592
9	Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy and Environmental Science, 2010, 3, 1437.	15.6	586
10	A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435, 795-798.	13.7	583
11	Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 2013, 12, 84-107.	2.3	529
12	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019, 9, 9973-10011.	5.5	491
13	Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56, 4876-4889.	3.8	461
14	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	18.7	448
15	A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 6442-6448.	11.1	429
16	Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3â^î^b-based cathodes for intermediate-temperature solid-oxide fuel cells: A review. Journal of Power Sources, 2009, 192, 231-246.	4.0	409
17	SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3â^'<i>δ</i>} Perovskite as a Nextâ€Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2015, 54, 3897-3901.	7.2	400
18	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 2016, 194, 7-15.	10.8	390

#	Article	IF	CITATIONS
19	Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal, 2009, 44, 19-41.	1.8	377
20	Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science, 2012, 57, 804-874.	16.0	372
21	A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602122.	10.2	369
22	Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nature Communications, 2020, 11, 2002.	5.8	366
23	Advances in non-enzymatic glucose sensors based on metal oxides. Journal of Materials Chemistry B, 2016, 4, 7333-7349.	2.9	348
24	Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies. Clean - Soil, Air, Water, 2008, 36, 937-962.	0.7	340
25	Thermal-expansion offset for high-performance fuel cell cathodes. Nature, 2021, 591, 246-251.	13.7	328
26	Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review. Progress in Energy and Combustion Science, 2017, 61, 57-77.	15.8	314
27	Enhancing Electrocatalytic Activity for Hydrogen Evolution by Strongly Coupled Molybdenum Nitride@Nitrogen-Doped Carbon Porous Nano-Octahedrons. ACS Catalysis, 2017, 7, 3540-3547.	5.5	306
28	Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93, 48-58.	5.4	293
29	Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energyâ€Related Applications. Small Methods, 2018, 2, 1800071.	4.6	285
30	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	5.2	277
31	The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon, 2013, 52, 181-192.	5.4	275
32	Phosphorusâ€Đoped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. Advanced Functional Materials, 2016, 26, 5862-5872.	7.8	271
33	Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Separation and Purification Technology, 2001, 25, 419-429.	3.9	267
34	Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study. ACS Catalysis, 2017, 7, 388-397.	5.5	260
35	Recent Progress on Advanced Materials for Solidâ€Oxide Fuel Cells Operating Below 500 °C. Advanced Materials, 2017, 29, 1700132.	11.1	257
36	Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study. Journal of Physical Chemistry C, 2012, 116, 5827-5834.	1.5	253

#	Article	IF	CITATIONS
37	Perovskite Oxide Based Electrodes for Highâ€Performance Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 136-152.	7.2	253
38	A Highâ€Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo _{0.8} Fe _{0.2} O ₂ . Advanced Materials, 2015, 27, 7150-7155.	11.1	249
39	Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Science, 2016, 3, 1500187.	5.6	245
40	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	11.1	243
41	Zirconium doping effect on the performance of proton-conducting BaZryCe0.8â^'yY0.2O3â^'δ (0.0â‰ y â‰ 0 .8) for fuel cell applications. Journal of Power Sources, 2009, 193, 400-407.	4.0	242
42	Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. Journal of Membrane Science, 2001, 183, 181-192.	4.1	237
43	Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements. Advanced Energy Materials, 2015, 5, 1500537.	10.2	229
44	Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis. Trends in Chemistry, 2019, 1, 410-424.	4.4	227
45	Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â^δ perovskite as oxygen semi-permeable membrane. Journal of Membrane Science, 2007, 291, 148-156.	4.1	226
46	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	10.2	224
47	Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â^'δ (x>0) perovskite as a solid-oxide fuel cell cathode. Journal of Power Sources, 2008, 182, 24-31.	4.0	218
48	Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116, 100717.	16.0	216
49	Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 2018, 43, 7823-7854.	3.8	210
50	Active Centers of Catalysts for Higher Alcohol Synthesis from Syngas: A Review. ACS Catalysis, 2018, 8, 7025-7050.	5.5	206
51	Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. Nano Letters, 2016, 16, 512-518.	4.5	202
52	Anion Doping: A New Strategy for Developing Highâ€Performance Perovskiteâ€Type Cathode Materials of Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1700242.	10.2	198
53	Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2009779.	7.8	195
54	Unusual synergistic effect in layered Ruddlesdenâ^'Popper oxide enables ultrafast hydrogen evolution. Nature Communications, 2019, 10, 149.	5.8	187

#	Article	IF	CITATIONS
55	Water Splitting with an Enhanced Bifunctional Double Perovskite. ACS Catalysis, 2018, 8, 364-371.	5.5	186
56	La-doped BaFeO3â~'δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte. Journal of Materials Chemistry, 2012, 22, 15071.	6.7	184
57	Assessment of Ba0.5Sr0.5Co1â^'yFeyO3â^'Î′ (y=0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochimica Acta, 2007, 52, 7343-7351.	2.6	182
58	A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nature Communications, 2017, 8, 13990.	5.8	180
59	Systematic Study of Oxygen Evolution Activity and Stability on La _{1–<i>x</i>} Sr _{<i>x</i>} FeO _{3â^î^} Perovskite Electrocatalysts in Alkaline Media. ACS Applied Materials & Interfaces, 2018, 10, 11715-11721.	4.0	173
60	Enhancing Bi-functional Electrocatalytic Activity of Perovskite by Temperature Shock: A Case Study of LaNiO _{3â^î/} . Journal of Physical Chemistry Letters, 2013, 4, 2982-2988.	2.1	172
61	Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^î^} nanofilms with tunable oxidation state. Science Advances, 2017, 3, e1603206.	4.7	170
62	Designing CO ₂ -resistant oxygen-selective mixed ionic–electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46, 2941-3005.	18.7	164
63	Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy and Environmental Science, 2019, 12, 2030-2053.	15.6	163
64	Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3â^î^ mixed conductor. International Journal of Hydrogen Energy, 2011, 36, 6948-6956.	3.8	161
65	Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3â~δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and Purification Technology, 2001, 25, 97-116.	3.9	160
66	Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â^´î´ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. Journal of Power Sources, 2008, 180, 15-22.	4.0	156
67	Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy & Fuels, 2020, 34, 15169-15194.	2.5	152
68	Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale, 2013, 5, 7970.	2.8	149
69	Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Advances, 2011, 1, 1661.	1.7	143
70	Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: A review. Journal of Hazardous Materials, 2009, 161, 1-20.	6.5	141
71	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 2021, 50, 10116-10211.	18.7	140
72	Ruddlesden–Popper perovskites in electrocatalysis. Materials Horizons, 2020, 7, 2519-2565.	6.4	139

#	Article	IF	CITATIONS
73	A Highly Active Perovskite Electrode for the Oxygen Reduction Reaction Below 600 °C. Angewandte Chemie - International Edition, 2013, 52, 14036-14040.	7.2	138
74	High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20, 9619.	6.7	133
75	Efficient stabilization of cubic perovskite SrCoO3â~δ by B-site low concentration scandium doping combined with sol–gel synthesis. Journal of Alloys and Compounds, 2008, 455, 465-470.	2.8	132
76	Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element. Chemical Engineering Journal, 2019, 355, 721-730.	6.6	132
77	Electrolyte materials for intermediate-temperature solid oxide fuel cells. Progress in Natural Science: Materials International, 2020, 30, 764-774.	1.8	129
78	Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Advanced Energy Materials, 2015, 5, 1500188.	10.2	128
79	Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogenâ€Rich Grapheneâ€Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst. Advanced Science, 2018, 5, 1700603.	5.6	128
80	A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600 °C. Chemical Communications, 2008, , 5791.	2.2	125
81	SrCo _{0.9} Ti _{0.1} O _{3â[^]î′} As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. ACS Applied Materials & Interfaces, 2015, 7, 17663-17670.	4.0	125
82	New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. Journal of Materials Chemistry A, 2019, 7, 13265-13274.	5.2	125
83	Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis. Advanced Science, 2018, 5, 1800514.	5.6	124
84	Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 exposure. Journal of Membrane Science, 2012, 389, 216-222.	4.1	122
85	Recent Advances in Metalâ€Organic Framework Derivatives as Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 272-289.	2.4	121
86	Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy and Environmental Materials, 2020, 3, 121-145.	7.3	119
87	Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3â [~] Î [~] oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 2008, 56, 2687-2698.	3.8	118
88	Activated carbon from durian shell: Preparation and characterization. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 457-462.	2.7	118
89	Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications. Journal of Alloys and Compounds, 2006, 426, 368-374.	2.8	117
90	Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite. Chemistry of Materials, 2015, 27, 3048-3054.	3.2	117

#	Article	IF	CITATIONS
91	Advanced perovskite anodes for solid oxide fuel cells: A review. International Journal of Hydrogen Energy, 2019, 44, 31275-31304.	3.8	117
92	Systematic investigation on new SrCo1ⴒyNbyO3ⴒδ ceramic membranes with high oxygen semi-permeability. Journal of Membrane Science, 2008, 323, 436-443.	4.1	114
93	A Cobaltâ€Free Multiâ€Phase Nanocomposite as Nearâ€Ideal Cathode of Intermediateâ€Temperature Solid Oxide Fuel Cells Developed by Smart Selfâ€Assembly. Advanced Materials, 2020, 32, e1906979.	11.1	113
94	Fundamental Understanding and Application of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^îî} Perovskite in Energy Storage and Conversion: Past, Present, and Future. Energy & Fuels, 2021, 35, 13585-13609.	2.5	113
95	Novel B-site ordered double perovskite Ba ₂ Bi _{0.1} Sc _{0.2} Co _{1.7} O _{6â^'x} for highly efficient oxygen reduction reaction. Energy and Environmental Science, 2011, 4, 872-875.	15.6	112
96	Properties and performance of A-site deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â^'δ for oxygen permeating membrane. Journal of Membrane Science, 2007, 306, 318-328.	4.1	111
97	Towards enhanced energy density of graphene-based supercapacitors: Current status, approaches, and future directions. Journal of Power Sources, 2018, 396, 182-206.	4.0	111
98	Boosting the Activity of BaCo _{0.4} Fe _{0.4} Zr _{0.1} Y _{0.1} O _{3â[^]} <i>_{Î^{<}}< Perovskite for Oxygen Reduction Reactions at Lowâ€toâ€Intermediate Temperatures through Tuning Bâ€5ite Cation Deficiency. Advanced Energy Materials, 2019, 9, 1902384.</i>	/iչ 10.2	111
99	Cobalt Oxide and Cobaltâ€Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. Advanced Science, 2016, 3, 1600060.	5.6	109
100	A Universal Strategy to Design Superior Waterâ€Splitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. Advanced Materials, 2018, 30, e1804333.	11.1	108
101	Novel SrSc0.2Co0.8O3â^ as a cathode material for low temperature solid-oxide fuel cell. Electrochemistry Communications, 2008, 10, 1647-1651.	2.3	107
102	BaNb0.05Fe0.95O3â^`î´ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2013, 1, 9781.	5.2	107
103	Systematic evaluation of Co-free LnBaFe2O5+δ (Ln=Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2012, 78, 466-474.	2.6	105
104	Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. Journal of Power Sources, 2017, 338, 26-33.	4.0	105
105	Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. Chemical Engineering Journal, 2021, 420, 127717.	6.6	102
106	Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & Interfaces, 2016, 8, 23774-23783.	4.0	101
107	Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. Carbon, 2016, 107, 67-73.	5.4	101
108	Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 9526-9535.	5.2	100

#	Article	IF	CITATIONS
109	Evaluation of the CO ₂ Poisoning Effect on a Highly Active Cathode SrSc _{0.175} Nb _{0.025} Co _{0.8} O _{3-δ} in the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 3003-3011.	4.0	99
110	Facile synthesis of a MoO2–Mo2C–C composite and its application as favorable anode material for lithium-ion batteries. Journal of Power Sources, 2016, 307, 552-560.	4.0	98
111	Highâ€Performance Platinumâ€Perovskite Composite Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Battery. Advanced Energy Materials, 2020, 10, 1903271.	10.2	98
112	Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8â^'xO3â^'δ ceramic membranes. Journal of Membrane Science, 2000, 164, 167-176.	4.1	97
113	Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. International Journal of Hydrogen Energy, 2010, 35, 2637-2642.	3.8	97
114	High Configuration Entropy Activated Lattice Oxygen for O ₂ Formation on Perovskite Electrocatalyst. Advanced Functional Materials, 2022, 32, .	7.8	96
115	High power-density single-chamber fuel cells operated on methane. Journal of Power Sources, 2006, 162, 589-596.	4.0	94
116	Searching General Sufficientâ€andâ€Necessary Conditions for Ultrafast Hydrogenâ€Evolving Electrocatalysis. Advanced Functional Materials, 2019, 29, 1900704.	7.8	94
117	Surprisingly High Activity for Oxygen Reduction Reaction of Selected Oxides Lacking Long Oxygen-Ion Diffusion Paths at Intermediate Temperatures: A Case Study of Cobalt-Free BaFeO _{3-δ} . ACS Applied Materials & Interfaces, 2014, 6, 11180-11189.	4.0	93
118	Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9â^'xFexO3â^'δ cathodes for solid oxide fuel cells. Applied Catalysis B: Environmental, 2015, 172-173, 52-57.	10.8	93
119	Perovskite Oxide Catalysts for Advanced Oxidation Reactions. Advanced Functional Materials, 2021, 31, 2102089.	7.8	93
120	A Comparative Study of Oxygen Reduction Reaction on Bi- and La-Doped SrFeO[sub 3â^î] Perovskite Cathodes. Journal of the Electrochemical Society, 2011, 158, B132.	1.3	92
121	Structural and oxygen-transport studies of double perovskites PrBa _{1â^'x} Co ₂ O _{5+1´} (x = 0.00, 0.05, and 0.10) toward their application as superior oxygen reduction electrodes. Journal of Materials Chemistry A, 2014, 2, 20520-20529.	5.2	92
122	Nanostructured Co-Mn containing perovskites for degradation of pollutants: Insight into the activity and stability. Journal of Hazardous Materials, 2018, 349, 177-185.	6.5	92
123	An Aâ€Siteâ€Deficient Perovskite offers High Activity and Stability for Lowâ€Temperature Solidâ€Oxide Fuel Cells. ChemSusChem, 2013, 6, 2249-2254.	3.6	90
124	Activity and Stability of Ruddlesden–Popperâ€Type La _{<i>n</i>+1} Ni _{<i>n</i>} O _{3<i>n</i>+1} (<i>n</i> =1, 2, 3, and â^ž) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. Chemistry - A European Journal, 2016, 22, 2719-2727.	1.7	90
125	Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 35308-35314.	4.0	90
126	Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 2010, 48, 81-86.	2.6	88

#	Article	IF	CITATIONS
127	A Universal and Facile Way for the Development of Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Utilizing the Synergistic Effect. Chemistry - A European Journal, 2014, 20, 15533-15542.	1.7	87
128	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^'<i>δ</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 9576-9579.	7.2	87
129	AÂsurface-modified antiperovskite asÂan electrocatalyst for water oxidation. Nature Communications, 2018, 9, 2326.	5.8	87
130	Enabling High and Stable Electrocatalytic Activity of Ironâ€Based Perovskite Oxides for Water Splitting by Combined Bulk Doping and Morphology Designing. Advanced Materials Interfaces, 2019, 6, 1801317.	1.9	87
131	Perovskites for protonic ceramic fuel cells: a review. Energy and Environmental Science, 2022, 15, 2200-2232.	15.6	87
132	Ba0.5Sr0.5Co0.8Fe0.2O3â^δ+LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2007, 168, 330-337.	4.0	86
133	Perovskite-based proton conducting membranes for hydrogen separation: A review. International Journal of Hydrogen Energy, 2018, 43, 15281-15305.	3.8	86
134	Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3â^´î´ cathodes prepared via electroless deposition. Electrochimica Acta, 2008, 53, 4370-4380.	2.6	85
135	Synergistically enhanced hydrogen evolution electrocatalysis by <i>in situ</i> exsolution of metallic nanoparticles on perovskites. Journal of Materials Chemistry A, 2018, 6, 13582-13587.	5.2	85
136	A Functionâ€Separated Design of Electrode for Realizing Highâ€Performance Hybrid Zinc Battery. Advanced Energy Materials, 2020, 10, 2002992.	10.2	84
137	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. Chemical Communications, 2016, 52, 10739-10742.	2.2	83
138	High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sensors and Actuators B: Chemical, 2017, 244, 482-491.	4.0	82
139	Gas Humidification Impact on the Properties and Performance of Perovskiteâ€Type Functional Materials in Protonâ€Conducting Solid Oxide Cells. Advanced Functional Materials, 2018, 28, 1802592.	7.8	82
140	Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 9854-9859.	5.2	82
141	Cation-Deficient Perovskites for Clean Energy Conversion. Accounts of Materials Research, 2021, 2, 477-488.	5.9	82
142	A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. Journal of Materials Chemistry, 2011, 21, 15343.	6.7	81
143	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	0.8	81
144	Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2021, 135, 110164.	8.2	80

#	Article	IF	CITATIONS
145	Performance of PrBaCo ₂ O _{5+δ} as a Proton-Conducting Solid-Oxide Fuel Cell Cathode. Journal of Physical Chemistry A, 2010, 114, 3764-3772.	1.1	79
146	The Mechanism of Piezocatalysis: Energy Band Theory or Screening Charge Effect?. Angewandte Chemie - International Edition, 2022, 61, e202110429.	7.2	79
147	A New Durable Surface Nanoparticlesâ€Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere. Advanced Materials, 2022, 34, e2106379.	11.1	79
148	Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3â ´´Î´ as a cathode of solid oxide fuel cells operating below 600°C. International Journal of Hydrogen Energy, 2010, 35, 1356-1366.	3.8	78
149	Evaluation of cassava peel waste as lowcost biosorbent for Ni-sorption: Equilibrium, kinetics, thermodynamics and mechanism. Chemical Engineering Journal, 2011, 172, 158-166.	6.6	78
150	Novel CO ₂ -tolerant ion-transporting ceramic membranes with an external short circuit for oxygen separation at intermediate temperatures. Energy and Environmental Science, 2012, 5, 5257-5264.	15.6	78
151	High performance BaBiScCo hollow fibre membranes for oxygen transport. Energy and Environmental Science, 2011, 4, 2516.	15.6	77
152	Cobalt-free SrNbxFe1â^'xO3â^'î´ (xÂ=Â0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2015, 298, 209-216.	4.0	77
153	Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. Advanced Energy Materials, 2019, 9, 1900429.	10.2	76
154	Rational Design of a Waterâ€Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. Advanced Science, 2017, 4, 1700337.	5.6	74
155	A comparative study of Sm0.5Sr0.5MO3â~`î´ (MÂ=ÂCo and Mn) as oxygen reduction electrodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 4377-4387.	3.8	72
156	Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3â´´l´. Electrochimica Acta, 2016, 219, 553-559.	2.6	72
157	Monoclinic SrIrO ₃ : An Easily Synthesized Conductive Perovskite Oxide with Outstanding Performance for Overall Water Splitting in Alkaline Solution. Chemistry of Materials, 2020, 32, 4509-4517.	3.2	72
158	Electric Power and Synthesis Gas Coâ€generation From Methane with Zero Waste Gas Emission. Angewandte Chemie - International Edition, 2011, 50, 1792-1797.	7.2	71
159	High-performance SrNb _{0.1} Co _{0.9â^'x} Fe _x O _{3â^'Î} perovskite cathodes for low-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 15454-15462.	5.2	71
160	Evaluation and optimization of Bi1â^'xSrxFeO3â^'Î^ perovskites as cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 3179-3186.	3.8	70
161	An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3â~î´. Journal of Power Sources, 2016, 326, 459-465.	4.0	70
162	B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 9415-9423.	4.0	69

#	Article	IF	CITATIONS
163	Postsynthesis Growth of CoOOH Nanostructure on SrCo _{0.6} Ti _{0.4} O _{3â~l^} Perovskite Surface for Enhanced Degradation of Aqueous Organic Contaminants. ACS Sustainable Chemistry and Engineering, 2018, 6, 15737-15748.	3.2	69
164	Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. Journal of Energy Chemistry, 2021, 52, 115-120.	7.1	69
165	The BaCe _{0.16} Y _{0.04} Fe _{0.8} O _{3â^'<i>δ</i>} nanocomposite: a new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. Journal of Materials Chemistry A, 2022, 10, 5381-5390.	5.2	69
166	LSCF Nanopowder from Cellulose–Glycineâ€Nitrate Process and its Application in Intermediateâ€Temperature Solidâ€Oxide Fuel Cells. Journal of the American Ceramic Society, 2008, 91, 1155-1162.	1.9	68
167	Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers. Journal of Membrane Science, 2017, 535, 143-150.	4.1	68
168	A Green Route to a Na ₂ FePO ₄ F-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life. ACS Applied Materials & Interfaces, 2017, 9, 16280-16287.	4.0	68
169	SrCo1â^'xTixO3â^'î´ perovskites as excellent catalysts for fast degradation of water contaminants in neutral and alkaline solutions. Scientific Reports, 2017, 7, 44215.	1.6	68
170	Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. Journal of Materials Chemistry A, 2013, 1, 13233.	5.2	67
171	Superâ€Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation. Small, 2019, 15, e1903120.	5.2	67
172	Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3â^î^ as cathodes for a proton conducting solid-oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 8281-8288.	3.8	66
173	Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction. Scientific Reports, 2012, 2, 327.	1.6	66
174	Fast lithium-ion insertion of TiO2 nanotube and graphene composites. Electrochimica Acta, 2013, 88, 847-857.	2.6	66
175	Compositional Engineering of Perovskite Oxides for Highly Efficient Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2015, 7, 8562-8571.	4.0	66
176	Cobalt-free polycrystalline Ba0.95La0.05FeO3â^î´thin films as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2014, 250, 188-195.	4.0	65
177	Pt/C–LiCoO ₂ composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 4516-4524.	5.2	65
178	Recent Progress on Structurally Ordered Materials for Electrocatalysis. Advanced Energy Materials, 2021, 11, 2101937.	10.2	65
179	Novel mixed conducting SrSc _{0.05} Co _{0.95} O _{3â€î´} ceramic membrane for oxygen separation. AICHE Journal, 2007, 53, 3116-3124.	1.8	64
180	Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3â^î´ perovskite. Separation and Purification Technology, 2009, 67, 304-311.	3.9	64

#	Article	IF	CITATIONS
181	Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels. Journal of Power Sources, 2017, 347, 259-269.	4.0	63
182	Tuning layer-structured La _{0.6} Sr _{1.4} MnO _{4+δ} into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. Journal of Materials Chemistry A, 2016, 4, 10641-10649.	5.2	62
183	Cobaltâ€Free Perovskite Cathodes for Solid Oxide Fuel Cells. ChemElectroChem, 2019, 6, 3549-3569.	1.7	62
184	Boosting the oxygen evolution reaction activity of a perovskite through introducing multi-element synergy and building an ordered structure. Journal of Materials Chemistry A, 2019, 7, 9924-9932.	5.2	62
185	An Aurivillius Oxide Based Cathode with Excellent CO ₂ Tolerance for Intermediateâ€Temperature Solid Oxide Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 8988-8993.	7.2	61
186	B‣ite Cation Ordered Double Perovskites as Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 5722-5728.	1.7	61
187	Palladium surface modified La0.6Sr0.4Co0.2Fe0.8O3â^ hollow fibres for oxygen separation. Journal of Membrane Science, 2011, 380, 223-231.	4.1	59
188	Optimising organic ionic plastic crystal electrolyte for all solid-state and higher than ambient temperature lithium batteries. Journal of Solid State Electrochemistry, 2012, 16, 1841-1848.	1.2	59
189	Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3â~î^ as a cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 484-497.	3.8	59
190	Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery. Journal of Power Sources, 2014, 254, 18-28.	4.0	59
191	Evaluation of SrSc0.175Nb0.025Co0.8O3-l̂´ perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance. Electrochimica Acta, 2018, 259, 559-565.	2.6	59
192	Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. Chemical Engineering Journal, 2021, 406, 126883.	6.6	59
193	In situ fabrication of (Sr,La)FeO ₄ with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode. Journal of Materials Chemistry A, 2016, 4, 13997-14007.	5.2	58
194	Recent advances in single-chamber fuel-cells: Experiment and modeling. Solid State Ionics, 2006, 177, 2013-2021.	1.3	56
195	Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3â^δ mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 5176-5184.	4.0	56
196	One-dimensional BiOBr nanosheets/TiO2 nanofibers composite: Controllable synthesis and enhanced visible photocatalytic activity. Ceramics International, 2017, 43, 15769-15776.	2.3	56
197	Perovskite-based mixed protonic–electronic conducting membranes for hydrogen separation: Recent status and advances. Journal of Industrial and Engineering Chemistry, 2018, 60, 297-306.	2.9	56
198	Perovskite oxide/carbon nanotube hybrid bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2018, 286, 47-54.	2.6	56

#	Article	IF	CITATIONS
199	Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells. Journal of Energy Chemistry, 2021, 57, 406-427.	7.1	56
200	Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. Carbon Resources Conversion, 2021, 4, 239-250.	3.2	54
201	Tin-doped perovskite mixed conducting membrane for efficient air separation. Journal of Materials Chemistry A, 2014, 2, 9666-9674.	5.2	53
202	Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction. ACS Applied Materials & amp; Interfaces, 2015, 7, 22918-22926.	4.0	53
203	Earthâ€Abundant Silicon for Facilitating Water Oxidation over Ironâ€Based Perovskite Electrocatalyst. Advanced Materials Interfaces, 2018, 5, 1701693.	1.9	53
204	Novel scheme towards interfacial charge transfer between ZnIn2S4 and BiOBr for efficient photocatalytic removal of organics and chromium (VI) from water. Chemosphere, 2022, 303, 134973.	4.2	53
205	Phase Transition of a Cobaltâ€Free Perovskite as a Highâ€Performance Cathode for Intermediateâ€Temperature Solid Oxide Fuel Cells. ChemSusChem, 2012, 5, 2023-2031.	3.6	52
206	Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3â^î´ electrolyte membranes: The effect of the M dopant. Journal of Membrane Science, 2014, 467, 100-108.	4.1	52
207	Modelling of oxygen transport through mixed ionic-electronic conducting (MIEC) ceramic-based membranes: An overview. Journal of Membrane Science, 2018, 567, 228-260.	4.1	52
208	Emerging Strategies for Developing High-Performance Perovskite-Based Materials for Electrochemical Water Splitting. Energy & Fuels, 2020, 34, 10547-10567.	2.5	52
209	High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. Journal of Power Sources, 2020, 468, 228377.	4.0	52
210	On the use of organic ionic plastic crystals in all solid-state lithium metal batteries. Solid State Ionics, 2011, 204-205, 73-79.	1.3	51
211	Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater. Ecological Engineering, 2011, 37, 940-947.	1.6	51
212	Biopolymer composite fibres composed of calcium alginate reinforced with nanocrystalline cellulose. Composites Part A: Applied Science and Manufacturing, 2017, 96, 155-163.	3.8	51
213	Revamping existing glycol technologies in natural gas dehydration to improve the purity and absorption efficiency: Available methods and recent developments. Journal of Natural Gas Science and Engineering, 2018, 56, 486-503.	2.1	51
214	Microwave-assisted catalytic methane reforming: A review. Applied Catalysis A: General, 2020, 599, 117620.	2.2	51
215	Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta). Journal of Hazardous Materials, 2010, 180, 366-374.	6.5	50
216	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 14222-14232.	5.2	50

#	Article	IF	CITATIONS
217	Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba ₂ Bi _{0.1} Sc _{0.2} Co _{1.7} O _{6â^'<i>x</i>} Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. Chemistry of Materials, 2011, 23, 1618-1624.	3.2	49
218	BaCo _{0.6} Fe _{0.3} Sn _{0.1} O _{3â^îî} perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 15078.	5.2	49
219	Roadmap for Sustainable Mixed Ionicâ€Electronic Conducting Membranes. Advanced Functional Materials, 2022, 32, .	7.8	49
220	3D ordered macroporous SmCoO3 perovskite for highly active and selective hydrogen peroxide detection. Electrochimica Acta, 2018, 260, 372-383.	2.6	48
221	Fuel cells that operate at 300° to 500°C. Science, 2020, 369, 138-139.	6.0	48
222	Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3â~´Î´ perovskite with improved operational stability. Journal of Membrane Science, 2008, 318, 182-190.	4.1	47
223	Cobalt-free SrFe0.9Ti0.1O3â~Î^ as a high-performance electrode material for oxygen reduction reaction on doped ceria electrolyte with favorable CO2 tolerance. Journal of the European Ceramic Society, 2015, 35, 2531-2539.	2.8	47
224	Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3â^î^ as a bi-functional electrode material for solid oxide fuel cells. Journal of Power Sources, 2015, 298, 184-192.	4.0	47
225	Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. Journal of Membrane Science, 2016, 519, 11-21.	4.1	47
226	A CO ₂ -tolerant SrCo _{0.8} Fe _{0.15} Zr _{0.05} O _{3â^î^} cathode for proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2020, 8, 11292-11301.	5.2	47
227	Efficient and CO2-tolerant oxygen transport membranes prepared from high-valence B-site substituted cobalt-free SrFeO3â~δ. Journal of Membrane Science, 2015, 495, 187-197.	4.1	46
228	Non-metal fluorine doping in Ruddlesden–Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production. Materials Today Energy, 2022, 23, 100896.	2.5	46
229	3D core–shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode. Journal of Materials Chemistry A, 2014, 2, 1284-1293.	5.2	44
230	A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3â^' as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance. Journal of Power Sources, 2015, 274, 1024-1033.	4.0	44
231	A single-/double-perovskite composite with an overwhelming single-perovskite phase for the oxygen reduction reaction at intermediate temperatures. Journal of Materials Chemistry A, 2017, 5, 24842-24849.	5.2	43
232	Highly Active Carbon/αâ€MnO ₂ Hybrid Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2016, 3, 1760-1767.	1.7	42
233	Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells. Applied Energy, 2019, 238, 344-350.	5.1	42
234	Gasification of torrefied oil palm biomass in a fixed-bed reactor: Effects of gasifying agents on product characteristics. Journal of the Energy Institute, 2020, 93, 711-722.	2.7	42

#	Article	IF	CITATIONS
235	Influence of crystal structure on the electrochemical performance of A-site-deficient Sr _{1â^'s} Nb _{0.1} Co _{0.9} O _{3â^´l´} perovskite cathodes. RSC Advances, 2014, 4, 40865-40872.	1.7	40
236	A new scandium and niobium co-doped cobalt-free perovskite cathode for intermediate-temperature solid oxide fuel cells. Energy, 2016, 95, 137-143.	4.5	40
237	High-Performance Proton-Conducting Fuel Cell with B-Site-Deficient Perovskites for All Cell Components. Energy & Fuels, 2020, 34, 11464-11471.	2.5	40
238	A Selfâ€Assembled Heteroâ€Structured Inverseâ€Spinel and Antiâ€Perovskite Nanocomposite for Ultrafast Water Oxidation. Small, 2020, 16, e2002089.	5.2	40
239	Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. Advanced Functional Materials, 2021, 31, 2008077.	7.8	40
240	SrCo0.8Ti0.1Ta0.1O3-Î [^] perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells. Composites Part B: Engineering, 2021, 213, 108726.	5.9	40
241	Critical evaluation of reference systems for voltammetric measurements in ionic liquids. Electrochimica Acta, 2012, 82, 60-68.	2.6	39
242	Molybdenum and Niobium Codoped B-Site-Ordered Double Perovskite Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 16939-16942.	4.0	39
243	Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. Journal of Materials Chemistry A, 2019, 7, 19228-19233.	5.2	39
244	Removal of heavy metal cations and co-existing anions in simulated wastewater by two separated hydroxylated MXene membranes under an external voltage. Journal of Membrane Science, 2021, 638, 119697.	4.1	39
245	Bi-doping effects on the structure and oxygen permeation properties of BaSc0.1Co0.9O3â^î^r perovskite membranes. Journal of Membrane Science, 2010, 361, 120-125.	4.1	38
246	Interfacial La Diffusion in the CeO ₂ /LaFeO ₃ Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2021, 13, 2799-2806.	4.0	38
247	Building Ruddlesden–Popper and Single Perovskite Nanocomposites: A New Strategy to Develop Highâ€Performance Cathode for Protonic Ceramic Fuel Cells. Small, 2021, 17, e2101872.	5.2	38
248	Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane. Energy, 2016, 113, 432-443.	4.5	37
249	Oxygen selective perovskite hollow fiber membrane bundles. Journal of Membrane Science, 2019, 581, 393-400.	4.1	37
250	Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. Electrochimica Acta, 2019, 299, 926-932.	2.6	37
251	Advances in Ceramic Thin Films Fabricated by Pulsed Laser Deposition for Intermediate-Temperature Solid Oxide Fuel Cells. Energy & Fuels, 2020, 34, 10568-10582.	2.5	37
252	A Highly Ordered Hydrophilic–Hydrophobic Janus Biâ€Functional Layer with Ultralow Pt Loading and Fast Gas/Water Transport for Fuel Cells. Energy and Environmental Materials, 2021, 4, 126-133.	7.3	37

#	Article	IF	CITATIONS
253	Perovskite Oxides in Catalytic Combustion of Volatile Organic Compounds: Recent Advances and Future Prospects. Energy and Environmental Materials, 2022, 5, 751-776.	7.3	37
254	Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane. Journal of Hazardous Materials, 2011, 186, 390-395.	6.5	36
255	A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. Journal of Alloys and Compounds, 2019, 775, 383-392.	2.8	36
256	Efficient Water Splitting Actualized through an Electrochemistryâ€Induced Heteroâ€Structured Antiperovskite/(Oxy)Hydroxide Hybrid. Small, 2020, 16, e2006800.	5.2	36
257	Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying. Journal of Power Sources, 2008, 184, 229-237.	4.0	35
258	Oxygen permeation performance of BaBiO3â~δ ceramic membranes. Journal of Membrane Science, 2009, 344, 281-287.	4.1	35
259	Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. Journal of Materials Chemistry A, 2019, 7, 17489-17497.	5.2	35
260	Synthesis, Characterization, Adsorption Isotherm, and Kinetic Study of Oil Palm Trunk-Derived Activated Carbon for Tannin Removal from Aqueous Solution. ACS Omega, 2020, 5, 28673-28683.	1.6	35
261	Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. Materials Research Bulletin, 2021, 140, 111315.	2.7	35
262	Composition and microstructure optimization and operation stability of barium deficient Ba1â^'xCo0.7Fe0.2Nb0.1O3â^'l´ perovskite oxide electrodes. Electrochimica Acta, 2013, 103, 23-31.	2.6	34
263	High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2016, 212, 179-186.	2.6	34
264	Anodes for Carbonâ€Fueled Solid Oxide Fuel Cells. ChemElectroChem, 2016, 3, 193-203.	1.7	34
265	Adsorption-based synthesis of Co 3 O 4 /C composite anode for high performance lithium-ion batteries. Energy, 2017, 125, 569-575.	4.5	34
266	Highly Active and Stable Cobalt-Free Hafnium-doped SrFe _{0.9} Hf _{0.1} O _{3â^δ} Perovskite Cathode for Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2018, 1, 2134-2142.	2.5	34
267	New Phosphorusâ€Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry - A European Journal, 2018, 24, 6950-6957.	1.7	34
268	Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. Ceramics International, 2018, 44, 5184-5192.	2.3	34
269	A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. Journal of Hazardous Materials, 2019, 369, 699-706.	6.5	34
270	Optimization of ionic-liquid based electrolyte concentration for high-energy density graphene supercapacitors. Applied Materials Today, 2020, 18, 100522.	2.3	34

#	Article	IF	CITATIONS
271	Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future. Materials Reports Energy, 2021, 1, 100003.	1.7	34
272	Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers. Polymers, 2021, 13, 2052.	2.0	34
273	Overview of the factors affecting the performance of vanadium redox flow batteries. Journal of Energy Storage, 2021, 41, 102857.	3.9	34
274	The Mechanism of Piezocatalysis: Energy Band Theory or Screening Charge Effect?. Angewandte Chemie, 2022, 134, .	1.6	34
275	Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3â~δ for efficient oxygen evolution reaction. Nano Research, 2022, 15, 6977-6986.	5.8	34
276	The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3â~δperovskite. Journal of Membrane Science, 2014, 449, 86-96.	4.1	33
277	Novel cathode-supported hollow fibers for light weight micro-tubular solid oxide fuel cells with an active cathode functional layer. Journal of Materials Chemistry A, 2015, 3, 1017-1022.	5.2	32
278	Improved performance of a symmetrical solid oxide fuel cell by swapping the roles of doped ceria and La0.6Sr1.4MnO4+δ in the electrode. Journal of Power Sources, 2017, 342, 644-651.	4.0	32
279	Boosting the oxygen evolution catalytic performance of perovskites <i>via</i> optimizing calcination temperature. Journal of Materials Chemistry A, 2020, 8, 6480-6486.	5.2	32
280	Fishbone-derived N-doped hierarchical porous carbon as an electrode material for supercapacitor. Journal of Alloys and Compounds, 2020, 832, 154950.	2.8	32
281	High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. Journal of Alloys and Compounds, 2015, 639, 27-35.	2.8	31
282	Significantly Improving the Durability of Single-Chamber Solid Oxide Fuel Cells: A Highly Active CO ₂ -Resistant Perovskite Cathode. ACS Applied Energy Materials, 2018, 1, 1337-1343.	2.5	31
283	A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 405, 124-131.	4.0	31
284	Graphene nanostructures toward clean energy technology applications. Wiley Interdisciplinary Reviews: Energy and Environment, 2012, 1, 317-336.	1.9	30
285	Rational Design of Metal Oxide–Based Cathodes for Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2018, 8, 1800172.	10.2	30
286	A new highly active and CO2-stable perovskite-type cathode material for solid oxide fuel cells developed from A- and B-site cation synergy. Journal of Power Sources, 2020, 457, 227995.	4.0	30
287	Engineering Charge Redistribution within Perovskite Oxides for Synergistically Enhanced Overall Water Splitting. , 2021, 3, 1258-1265.		30
288	Electrochemical Performance of SrSc[sub 0.2]Co[sub 0.8]O[sub 3â^´Î] Cathode on Sm[sub 0.2]Ce[sub 0.8]O[sub 1.9] Electrolyte for Low Temperature SOFCs. Journal of the Electrochemical Society, 2009, 156, B884.	1.3	29

#	Article	IF	CITATIONS
289	Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance. Journal of Power Sources, 2013, 231, 177-185.	4.0	29
290	A hierarchical Zn ₂ Mo ₃ O ₈ nanodots–porous carbon composite as a superior anode for lithium-ion batteries. Chemical Communications, 2016, 52, 9402-9405.	2.2	29
291	Enhancement of oxygen permeation fluxes of La0.6Sr0.4CoO3â ^{~?} hollow fiber membrane via macrostructure modification and (La0.5Sr0.5)2CoO4+ decoration. Chemical Engineering Research and Design, 2018, 134, 487-496.	2.7	29
292	Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 25227-25235.	4.0	29
293	Advances and future outlook in epoxy/graphene composites for anticorrosive applications. Progress in Organic Coatings, 2022, 162, 106571.	1.9	29
294	Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3â~δ electrode prepared by electroless deposition technique. Journal of Power Sources, 2009, 186, 244-251.	4.0	28
295	Comparative study of doped ceria thin-film electrolytes prepared by wet powder spraying with powder synthesized via two techniques. Journal of Power Sources, 2010, 195, 393-401.	4.0	28
296	Robust ion-transporting ceramic membrane with an internal short circuit for oxygen production. Journal of Materials Chemistry A, 2013, 1, 9150.	5.2	28
297	Rate determining step in SDC-SSAF dual-phase oxygen permeation membrane. Journal of Membrane Science, 2019, 573, 628-638.	4.1	28
298	Single-step synthesized dual-layer hollow fiber membrane reactor for on-site hydrogen production through ammonia decomposition. International Journal of Hydrogen Energy, 2020, 45, 7423-7432.	3.8	28
299	Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, .	5.5	28
300	Isothermal kinetic study of CO2 gasification of torrefied oil palm biomass. Biomass and Bioenergy, 2020, 134, 105487.	2.9	28
301	Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chemical Engineering Journal, 2021, 417, 128105.	6.6	28
302	Watermelon Peelâ€Derived Heteroatomâ€Doped Hierarchical Porous Carbon as a Highâ€Performance Electrode Material for Supercapacitors. ChemElectroChem, 2021, 8, 1196-1203.	1.7	28
303	Near-infrared (NIR) light responsiveness of CuS/S–C3N4 heterojunction photocatalyst with enhanced tetracycline degradation activity. Ceramics International, 2022, 48, 2459-2469.	2.3	28
304	Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature. Scientific Reports, 2011, 1, 155.	1.6	27
305	Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Frontiers of Chemical Science and Engineering, 2012, 6, 58-66.	2.3	27
306	Design and synthesis of polyol ester-based zinc metal alkoxides as a bi-functional thermal stabilizer for poly(vinyl chloride). Polymer Degradation and Stability, 2019, 159, 125-132.	2.7	27

#	Article	IF	CITATIONS
307	Synthesis of Sustainable Circular Economy in Palm Oil Industry Using Graph-Theoretic Method. Sustainability, 2020, 12, 8081.	1.6	27
308	A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes. Materials Reports Energy, 2021, 1, 100024.	1.7	27
309	Mechanically intensified and stabilized MXene membranes via the combination of graphene oxide for highly efficient osmotic power production. Journal of Membrane Science, 2022, 647, 120280.	4.1	27
310	Tailoring structural properties of carbon via implanting optimal co nanoparticles in nâ€rich carbon cages toward highâ€efficiency oxygen electrocatalysis for rechargeable znâ€eir batteries. , 2022, 4, 576-585.		27
311	Evaluation of mixedâ€conducting lanthanumâ€strontiumâ€cobaltite ceramic membrane for oxygen separation. AICHE Journal, 2009, 55, 2603-2613.	1.8	26
312	A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane–air mixture. Journal of Power Sources, 2009, 191, 225-232.	4.0	26
313	Tin and iron co-doping strategy for developing active and stable oxygen reduction catalysts from SrCoO3â~δfor operating below 800°C. Journal of Power Sources, 2015, 294, 339-346.	4.0	26
314	Evaluation of pulsed laser deposited SrNb0.1Co0.9O3â [~] î [^] thin films as promising cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 295, 117-124.	4.0	26
315	Oriented PrBaCo2O5+l̃´thin films for solid oxide fuel cells. Journal of Power Sources, 2015, 278, 623-629.	4.0	26
316	Materials design for ceramic oxygen permeation membranes: Single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite. Journal of Membrane Science, 2018, 566, 278-287.	4.1	26
317	Ternary Phase Diagram-Facilitated Rapid Screening of Double Perovskites As Electrocatalysts for the Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 5919-5926.	3.2	26
318	Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. Journal of Power Sources, 2020, 460, 228105.	4.0	26
319	Recent advances in functional oxides for high energy density sodium-ion batteries. Materials Reports Energy, 2021, 1, 100022.	1.7	26
320	Characterization of BiOBr/g-C3N4 heterostructures immobilized on flexible electrospun polyacrylonitrile nanofibers for photocatalytic applications. Applied Surface Science, 2021, 569, 151011.	3.1	26
321	Electrophoretic deposition of YSZ thin-film electrolyte for SOFCs utilizing electrostatic-steric stabilized suspensions obtained via high energy ball milling. International Journal of Hydrogen Energy, 2011, 36, 9195-9204.	3.8	25
322	Bi-functional performances of BaCe0.95Tb0.05O3â^î^-based hollow fiber membranes for power generation and hydrogen permeation. Journal of the European Ceramic Society, 2016, 36, 4123-4129.	2.8	25
323	Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. Journal of Membrane Science, 2018, 563, 617-624.	4.1	25
324	The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery. Frontiers in Chemistry, 2019, 7, 524.	1.8	25

#	Article	IF	CITATIONS
325	Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. Journal of Materials Science and Technology, 2020, 39, 22-27.	5.6	25
326	Review of oil palm-derived activated carbon for CO2 capture. Carbon Letters, 2021, 31, 201-252.	3.3	25
327	A novel Ba0.6Sr0.4Co0.9Nb0.1O3â^î^ cathode for protonic solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 4700-4703.	4.0	24
328	A composite oxygen-reduction electrode composed of SrSc0.2Co0.8O3â^`î^ perovskite and Sm0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 5601-5610.	3.8	24
329	Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. International Journal of Hydrogen Energy, 2012, 37, 8603-8612.	3.8	24
330	A CO2-tolerant nanostructured layer for oxygen transport membranes. RSC Advances, 2014, 4, 25924.	1.7	24
331	Optimal hydrothermal synthesis of hierarchical porous ZnMn 2 O 4 microspheres with more porous core for improved lithium storage performance. Electrochimica Acta, 2016, 207, 58-65.	2.6	24
332	Evaluation of A-site deficient Sr 1â^'x Sc 0.175 Nb 0.025 Co 0.8 O 3â^'î´ (x=0, 0.02, 0.05 and 0.1) perovskite cathodes for intermediate-temperature solid oxide fuel cells. Ceramics International, 2016, 42, 12894-12900.	2.3	24
333	Facile synthesis of synergistic Pt/(Co-N)@C composites as alternative oxygen-reduction electrode of PEMFCs with attractive activity and durability. Composites Part B: Engineering, 2020, 193, 108012.	5.9	24
334	Neem leaf utilization for copper ions removal from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 111-114.	2.7	23
335	Highly stable La0.6Sr0.4Co0.2Fe0.8O3â [~] hollow fibre membrane for air separation swept by steam or steam mixture. Journal of Membrane Science, 2015, 479, 232-239.	4.1	23
336	Three Strongly Coupled Allotropes in a Functionalized Porous Allâ€Carbon Nanocomposite as a Superior Anode for Lithiumâ€lon Batteries. ChemElectroChem, 2016, 3, 698-703.	1.7	23
337	A-Site Excess (La _{0.8} Ca _{0.2}) _{1.01} FeO _{3â^'î´} (LCF) Perovskite Hollow Fiber Membrane for Oxygen Permeation in CO ₂ -Containing Atmosphere. Energy & Fuels, 2017, 31, 4531-4538.	2.5	23
338	CO 2 -enhanced hydrogen permeability of dual-layered A-site deficient Ba 0.95 Ce 0.85 Tb 0.05 Zr 0.1 O 3-δ -based hollow fiber membrane. Journal of Membrane Science, 2018, 546, 82-89.	4.1	23
339	Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. Electrochimica Acta, 2018, 282, 324-330.	2.6	23
340	Characterization of Hierarchical Porous Carbons Made from Bean Curd via K ₂ CO ₃ Activation as a Supercapacitor Electrode. ChemElectroChem, 2019, 6, 4022-4030.	1.7	23
341	Facilitating Oxygen Redox on Manganese Oxide Nanosheets by Tuning Active Species and Oxygen Defects for Zincâ€Air Batteries. ChemElectroChem, 2020, 7, 4949-4955.	1.7	23
342	Enhancing the oxygen reduction activity of PrBaCo2O5+δdouble perovskite cathode by tailoring the calcination temperatures. International Journal of Hydrogen Energy, 2020, 45, 25996-26004.	3.8	23

#	Article	IF	CITATIONS
343	Dual-layer BaCe0.8Y0.2O3-δ-Ce0.8Y0.2O2-δ/BaCe0.8Y0.2O3-δ-Ni hollow fiber membranes for H2 separation. Journal of Membrane Science, 2020, 601, 117801.	4.1	23
344	Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties. Renewable and Sustainable Energy Reviews, 2021, 152, 111644.	8.2	23
345	Low thermal-expansion and high proton uptake for protonic ceramic fuel cell cathode. Journal of Power Sources, 2022, 530, 231321.	4.0	23
346	Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells. Chemical Engineering Journal, 2022, 450, 137787.	6.6	23
347	High performance tubular solid oxide fuel cells with BSCF cathode. International Journal of Hydrogen Energy, 2012, 37, 13022-13029.	3.8	22
348	Hierarchical porous cobalt-free perovskite electrode for highly efficient oxygen reduction. Journal of Materials Chemistry, 2012, 22, 16214.	6.7	22
349	Enhanced CO ₂ Resistance for Robust Oxygen Separation Through Tantalumâ€doped Perovskite Membranes. ChemSusChem, 2016, 9, 505-512.	3.6	22
350	Bundling strategy to simultaneously improve the mechanical strength and oxygen permeation flux of the individual perovskite hollow fiber membranes. Journal of Membrane Science, 2017, 527, 137-142.	4.1	22
351	CO2 erosion of BaCo0.85Bi0.05Zr0.1O3-î´ perovskite membranes under oxygen permeating conditions. Separation and Purification Technology, 2018, 207, 133-141.	3.9	22
352	Zeolitic Imidazolate Framework-Derived Ordered Pt–Fe Intermetallic Electrocatalysts for High-Performance Zn-Air Batteries. Energy & Fuels, 2020, 34, 11527-11535.	2.5	22
353	Enabling efficient hydrogen-evolution reaction over perovskite oxide electrocatalysts through phosphorus promotion. International Journal of Hydrogen Energy, 2020, 45, 24859-24869.	3.8	22
354	Modeling of hydrated cations transport through 2D MXene (Ti3C2Tx) membranes for water purification. Journal of Membrane Science, 2021, 631, 119346.	4.1	22
355	Advancements in Optimization and Control Techniques for Intensifying Processes. Processes, 2021, 9, 2150.	1.3	22
356	The evolution of process design and control for ternary azeotropic separation: Recent advances in distillation and future directions. Separation and Purification Technology, 2022, 284, 120292.	3.9	22
357	A single-step synthesized cobalt-free barium ferrites-based composite cathode for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 1340-1343.	2.3	21
358	External short circuit-assisted proton conducting ceramic membrane for H2 permeation. Ceramics International, 2014, 40, 791-797.	2.3	21
359	Oxygen permeation behavior through Ce _{0.9} Gd _{0.1} O _{2â^´Î´} membranes electronically short-circuited by dual-phase Ce _{0.9} Gd _{0.1} O _{2â^`δ} –Ag decoration. Journal of Materials Chemistry A, 2015, 3, 19033-19041.	5.2	21
360	SrCe _{0.95} Y _{0.05} O _{3â^îî} –ZnO dual-phase membranes for hydrogen permeation. RSC Advances, 2016, 6, 36786-36793.	1.7	21

#	Article	IF	CITATIONS
361	Na _{0.86} Co _{0.95} Fe _{0.05} O ₂ Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. ACS Applied Materials & Interfaces, 2017, 9, 21587-21592.	4.0	21
362	Enhanced hydrogen permeability and reverse water–gas shift reaction activity via magneli Ti 4 O 7 doping into SrCe 0.9 Y 0.1 O 3â^îr´hollow fiber membrane. International Journal of Hydrogen Energy, 2017, 42, 12301-12309.	3.8	21
363	Twoâ€Step Fabrication of Li ₄ Ti ₅ O ₁₂ â€Coated Carbon Nanofibers as a Flexible Film Electrode for Highâ€Power Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 2286-2292.	1.7	21
364	Enhanced oxygen permeability and electronic conductivity of Ce0.8Gd0.2O2â^î´ membrane via the addition of sintering aids. Solid State Ionics, 2017, 310, 121-128.	1.3	21
365	Oxygen permeation through single-phase perovskite membrane: Modeling study and comparison with the dual-phase membrane. Separation and Purification Technology, 2020, 235, 116224.	3.9	21
366	Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3-δ membrane using a thin Pd film protection strategy. Journal of Membrane Science, 2020, 596, 117709.	4.1	21
367	New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation. Journal of Membrane Science, 2021, 620, 118980.	4.1	21
368	Effects of preparation methods on the oxygen nonstoichiometry, B-site cation valences and catalytic efficiency of perovskite La0.6Sr0.4Co0.2Fe0.8O3â^îî. Ceramics International, 2009, 35, 3201-3206.	2.3	20
369	Optimizing Oxygen Transport Through La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^î^} Hollow Fiber by Microstructure Modification and Ag/Pt Catalyst Deposition. Energy & Fuels, 2012, 26, 4728-4734.	2.5	20
370	Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane. Journal of Membrane Science, 2014, 472, 10-18.	4.1	20
371	Intermediate-Temperature Solid Oxide Fuel Cells. Green Chemistry and Sustainable Technology, 2016, , .	0.4	20
372	Oxygen permeation properties of novel BaCo0.85Bi0.05Zr0.1O3â~δ hollow fibre membrane. Chemical Engineering Science, 2018, 177, 18-26.	1.9	20
373	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 2021, 8, .	5.5	20
374	Enhanced oxygen permeation through perovskite hollow fibre membranes by methane activation. Ceramics International, 2009, 35, 1435-1439.	2.3	19
375	Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3a^° membranes. Journal of Membrane Science, 2011, 366, 203-211.	4.1	19
376	Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO ₂ Composites. Journal of the Electrochemical Society, 2013, 160, H74-H79.	1.3	19
377	Highly Stable External Short-Circuit-Assisted Oxygen Ionic Transport Membrane Reactor for Carbon Dioxide Reduction Coupled with Methane Partial Oxidation. Energy & Fuels, 2014, 28, 349-355.	2.5	19
378	Transforming bulk alloys into nanoporous lanthanum-based perovskite oxides with high specific surface areas and enhanced electrocatalytic activities. Journal of Materials Chemistry A, 2018, 6, 19979-19988.	5.2	19

#	Article	IF	CITATIONS
379	Turning Detrimental Effect into Benefits: Enhanced Oxygen Reduction Reaction Activity of Cobalt-Free Perovskites at Intermediate Temperature <i>via</i> CO ₂ -Induced Surface Activation. ACS Applied Materials & Interfaces, 2020, 12, 16417-16425.	4.0	19
380	Towards data-driven process integration for renewable energy planning. Current Opinion in Chemical Engineering, 2021, 31, 100665.	3.8	19
381	Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation. Journal of Membrane Science, 2022, 648, 120297.	4.1	19
382	In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries. Electrochimica Acta, 2015, 180, 914-921.	2.6	18
383	An extremely active and durable Mo 2 C/graphene-like carbon based electrocatalyst for hydrogen evolution reaction. Materials Today Energy, 2017, 6, 230-237.	2.5	18
384	An Intrinsically Conductive Phosphorusâ€Doped Perovskite Oxide as a New Cathode for Highâ€Performance Dyeâ€Sensitized Solar Cells by Providing Internal Conducting Pathways. Solar Rrl, 2019, 3, 1900108.	3.1	18
385	Hydrogen permeation performance of dual-phase protonic-electronic conducting ceramic membrane with regular and independent transport channels. Separation and Purification Technology, 2019, 213, 515-523.	3.9	18
386	Comparative study on the performance of microwave-assisted plasma DRM in nitrogen and argon atmospheres at a low microwave power. Journal of Industrial and Engineering Chemistry, 2020, 85, 118-129.	2.9	18
387	Wet torrefaction of empty fruit bunches (EFB) and oil palm trunks (OPT): Effects of process parameters on their physicochemical and structural properties. South African Journal of Chemical Engineering, 2021, 35, 126-136.	1.2	18
388	A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc–Air Batteries. Small, 2022, 18, e2105604.	5.2	18
389	Microstructure tailoring of the nickel–yttria stabilised zirconia (Ni–YSZ) cermet hollow fibres. Ceramics International, 2012, 38, 6327-6334.	2.3	17
390	Comprehensive Kinetic Study on the Pyrolysis and Combustion Behaviours of Five Oil Palm Biomass by Thermogravimetric-Mass Spectrometry (TG-MS) Analyses. Bioenergy Research, 2019, 12, 370-387.	2.2	17
391	Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 99-109.	1.8	17
392	ZIF-67 membranes supported on porous ZnO hollow fibers for hydrogen separation from gas mixtures. Journal of Membrane Science, 2022, 653, 120550.	4.1	17
393	Sintering and oxygen permeation studies of La0.6Sr0.4Co0.2Fe0.8O3â^î^´ ceramic membranes with improved purity. Journal of the European Ceramic Society, 2011, 31, 2931-2938.	2.8	16
394	A Threeâ€Ðimensional Highly Interconnected Composite Oxygen Reduction Reaction Electrocatalyst prepared from a Core–shell Precursor. ChemSusChem, 2011, 4, 1582-1586.	3.6	16
395	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 10403-10408.	5.2	16
396	Effects of alkali promoters on tri-metallic Co-Ni-Cu-based perovskite catalyst for higher alcohol synthesis from syngas. Catalysis Today, 2020, 355, 26-34.	2.2	16

JAKA SUNARSO

#	Article	IF	CITATIONS
397	Tailoring reduction extent of flash-reduced graphene oxides for high performance supercapacitors. Journal of Power Sources, 2020, 478, 228732.	4.0	16
398	SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells. Renewable Energy, 2022, 185, 8-16.	4.3	16
399	Protonic ceramic materials for clean and sustainable energy: advantages and challenges. International Materials Reviews, 2023, 68, 272-300.	9.4	16
400	Bi-layer photoanode films of hierarchical carbon-doped brookite-rutile TiO 2 composite and anatase TiO 2 beads for efficient dye-sensitized solar cells. Electrochimica Acta, 2016, 216, 429-437.	2.6	15
401	Multifold Nanostructuring and Atomicâ€Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production. Chemistry - A European Journal, 2018, 24, 13800-13806.	1.7	15
402	Chlorine-Doped Perovskite Oxide: A Platinum-Free Cathode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 35641-35652.	4.0	15
403	Development of a technoâ€economic framework for natural gas dehydration via absorption using Triâ€Ethylene Glycol: a comparative study on conventional and stripping gas dehydration processes. Journal of Chemical Technology and Biotechnology, 2019, 94, 955-963.	1.6	15
404	Cu/ZnO Catalysts Derived from Bimetallic Metal–Organic Framework for Dimethyl Ether Synthesis from Syngas with Enhanced Selectivity and Stability. Small, 2020, 16, e1906276.	5.2	15
405	Structure effect on the oxygen permeation properties of barium bismuth iron oxide membranes. Journal of Membrane Science, 2010, 351, 44-49.	4.1	14
406	Development of nonstoichiometric silica with multi-active groups/polysulfone composite membranes for wastewater containing oil. Chemical Engineering Journal, 2011, 170, 14-20.	6.6	14
407	Influence of emulsification on the properties of styrene–butadiene–styrene chemically modified bitumens. Construction and Building Materials, 2012, 29, 97-101.	3.2	14
408	An Aurivillius Oxide Based Cathode with Excellent CO ₂ Tolerance for Intermediateâ€Temperature Solid Oxide Fuel Cells. Angewandte Chemie, 2016, 128, 9134-9139.	1.6	14
409	Electrospinning and hydrothermal synthesis of recyclable MoS2/CNFs hybrid with enhanced visible-light photocatalytic performance. Ceramics International, 2017, 43, 11028-11033.	2.3	14
410	Tuning the A-Site Cation Deficiency of La0.8Sr0.2FeO3â^î^ Perovskite Oxides for High-Efficiency Triiodide Reduction Reaction in Dye-Sensitized Solar Cells. Energy & Fuels, 2020, 34, 11322-11329.	2.5	14
411	Elevated-temperature H ₂ separation using a dense electron and proton mixed conducting polybenzimidazole-based membrane with 2D sulfonated graphene. Green Chemistry, 2021, 23, 3374-3385.	4.6	14
412	A Direct <i>n</i> -Butane Solid Oxide Fuel Cell Using Ba(Zr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1}) _{0.9} Ni _{0.05Perovskite as the Reforming Layer. ACS Applied Materials & Interfaces, 2021, 13, 20105-20113.}	b> A uxsub)>0 1 2/5(
413	Facile auto-combustion synthesis for oxygen separation membrane application. Journal of Membrane Science, 2009, 329, 219-227.	4.1	13

414Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting
ceramic membranes. Journal of Membrane Science, 2014, 470, 102-111.4.113

#	Article	IF	CITATIONS
415	Electrochemical Performance of Cobaltâ€Free Nb and Ta Coâ€Doped Perovskite Cathodes for Intermediateâ€Temperature Solid Oxide Fuel Cells. ChemElectroChem, 2017, 4, 2366-2372.	1.7	13
416	Highly Oxygen Nonâ€6toichiometric BaSc _{0.25} Co _{0.75} O _{3â€Î´} as a Highâ€Performance Cathode for Intermediateâ€Temperature Solid Oxide Fuel Cells. ChemElectroChem, 2018, 5, 785-792.	1.7	13
417	Enhanced CO selectivity for reverse waterâ€gas shift reaction using Ti 4 O 7 â€doped SrCe 0.9 Y 0.1 O 3â€Î´ hollow fibre membrane reactor. Canadian Journal of Chemical Engineering, 2019, 97, 1619-1626.	0.9	13
418	Robust Anode‣upported Cells with Fast Oxygen Release Channels for Efficient and Stable CO ₂ Electrolysis at Ultrahigh Current Densities. Small, 2021, 17, e2007211.	5.2	13
419	Fuzzy optimization for peer-to-peer (P2P) multi-period renewable energy trading planning. Journal of Cleaner Production, 2022, 368, 133122.	4.6	13
420	Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures. Environmental Science & amp; Technology, 2014, 48, 7122-7127.	4.6	12
421	Robust CO2 and H2 resistant triple-layered (Ag-YSZ)/YSZ/(La0.8Sr0.2MnO3-δ-YSZ) hollow fiber membranes with short-circuit for oxygen permeation. Journal of Membrane Science, 2017, 524, 596-603.	4.1	12
422	Constructing self-standing and non-precious metal heterogeneous nanowire arrays as high-performance oxygen evolution electrocatalysts: Beyond the electronegativity effect of the substrate. Journal of Power Sources, 2018, 396, 421-428.	4.0	12
423	Improving hydrogen permeation and interface property of ceramic-supported graphene oxide membrane via embedding of silicalite-1 zeolite into Al2O3 hollow fiber. Separation and Purification Technology, 2019, 227, 115712.	3.9	12
424	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. Journal of Materials Chemistry A, 2021, 9, 3151-3179.	5.2	12
425	Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen. Journal of Membrane Science, 2022, 645, 120207.	4.1	12
426	CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. Journal of Membrane Science, 2013, 427, 168-175.	4.1	11
427	Carbonâ€Dot/Naturalâ€Dye Sensitizer for TiO ₂ Solar Cells Prepared by a Oneâ€Step Treatment of Celery Leaf Extract. ChemPhotoChem, 2017, 1, 470-478.	1.5	11
428	Perovskite hollow fiber membranes supported in a porous and catalytically active perovskite matrix for air separation. Separation and Purification Technology, 2018, 192, 435-440.	3.9	11
429	A novel heterogeneous <scp>La_{0.8}Sr_{0.2}CoO_{3â^îr}/(La_{0.5}Sr_{0.5})_{2 dualâ€phase membrane for oxygen separation. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2239.}</scp>	Co	O _{4+í}
430	SDC‧CFZ dualâ€phase ceramics: Structure, electrical conductivity, thermal expansion, and O ₂ permeability. Journal of the American Ceramic Society, 2021, 104, 2268-2284.	1.9	11
431	LaBa0.8Ca0.2Co2O5+δ cathode with superior CO2 resistance and high oxygen reduction activity for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2022, 47, 16214-16221.	3.8	11
432	Regulating the hole transfer from CuWO4 photoanode to NiWO4 electrocatalyst for enhanced water oxidation performance. International Journal of Hydrogen Energy, 2022, 47, 20153-20165.	3.8	11

#	Article	IF	CITATIONS
433	Assessment of permethylated transition-metal sandwich complexes as internal reference redox systems in ionic liquids. Physical Chemistry Chemical Physics, 2013, 15, 2547.	1.3	10
434	Amorphous Ni _{0.75} Fe _{0.25} (OH) ₂ â€Decorated Layered Double Perovskite Pr _{0.5} Ba _{0.5} CoO _{3â€<i>δ</i>} for Highly Efficient and Stable Water Oxidation. ChemElectroChem, 2017, 4, 550-556.	1.7	10
435	Modeling of hydrogen separation through porous YSZ hollow fiberâ€supported graphene oxide membrane. AICHE Journal, 2018, 64, 2711-2720.	1.8	10
436	Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Glucose and Fructose in Wine. Journal of the Electrochemical Society, 2018, 165, B543-B550.	1.3	10
437	Experimental measurement and correlation of phase equilibria of palmitic, stearic, oleic, linoleic, and linolenic acids in supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, 2021, 97, 485-491.	2.9	10
438	Regulating the Interfacial Electron Density of La _{0.8} Sr _{0.2} Mn _{0.5} Co _{0.5} O ₃ /RuO _{<i>x</i>for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 61098-61106.}	sub> 4.0	10
439	Effect of Nano-Al ₂ O ₃ Addition on the Densification of YSZ Electrolytes. Journal of Nano Research, 2009, 6, 115-122.	0.8	9
440	The significant effect of the phase composition on the oxygen reduction reaction activity of a layered oxide cathode. Journal of Materials Chemistry A, 2013, 1, 11026.	5.2	9
441	A cobalt-free layered oxide as an oxygen reduction catalyst for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 15578-15584.	3.8	9
442	Synthesis of Highly Porous Metalâ€Free Oxygen Reduction Electrocatalysts in a Self‣acrificial Bacterial Cellulose Microreactor. Advanced Sustainable Systems, 2017, 1, 1700045.	2.7	9
443	A new graphical method to target carbon dioxide emission reductions by simultaneously aligning fuel switching, energy saving, investment cost, carbon credit, and payback time. International Journal of Energy Research, 2018, 42, 1551-1562.	2.2	9
444	CO ₂ â€resistant SDCâ€6SAF oxygen selective dualâ€phase hollow fiber membranes. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2528.	0.8	9
445	Soybean meal-derived heteroatoms-doped porous carbons for supercapacitor electrodes. Materials Chemistry and Physics, 2022, 284, 126055.	2.0	9
446	Photocatalytic activity of novel Bi 2 WO 6 /CNFs composite synthesized via two distinct solvothermal steps. Materials Letters, 2017, 197, 102-105.	1.3	8
447	A Parametric Study of Different Recycling Configurations for the Natural Gas Dehydration Process Via Absorption Using Triethylene Glycol. Process Integration and Optimization for Sustainability, 2018, 2, 447-460.	1.4	8
448	Enhancement of oxygen evolution reaction activity and durability of Ba0.5Sr0.5Co0.8Fe0.2O3- by CO2 thermal treatment. Journal of Materials Science and Technology, 2019, 35, 1184-1191.	5.6	8
449	Perowskitoxidâ€Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. Angewandte Chemie, 2020, 132, 140-158.	1.6	8
450	Development of a techno-economic framework for natural gas dehydration via absorption using tri-ethylene glycol: A comparative study between DRIZO and other dehydration processes. South African Journal of Chemical Engineering, 2020, 31, 17-24.	1.2	8

#	Article	IF	CITATIONS
451	New nitrogen-doped graphitic carbon nanosheets with rich structural defects and hierarchical nanopores as efficient metal-free electrocatalysts for oxygen reduction reaction in Zn-Air batteries. Chemical Engineering Science, 2022, 259, 117816.	1.9	8
452	Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst. International Journal of Hydrogen Energy, 2012, 37, 6844-6852.	3.8	7
453	The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers. Journal of Industrial and Engineering Chemistry, 2017, 53, 276-284.	2.9	7
454	Triggering a Self-Sustaining Reduction of Graphenes Oxide for High-Performance Energy Storage Devices. ACS Applied Nano Materials, 2020, 3, 9117-9126.	2.4	7
455	Adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: Isotherm and kinetic studies at acidic, ambient condition. Materials Today: Proceedings, 2022, 64, 1557-1562.	0.9	7
456	Physicochemical and structural characterisation of oil palm trunks (OPT) hydrochar made via wet torrefaction. Cleaner Engineering and Technology, 2022, 8, 100467.	2.1	7
457	Electroless deposition of Co(Mn)/Pd-decorator into Y2O3-stabilized ZrO2 scaffold as cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 53-63.	3.8	6
458	Parametric modeling study of oxidative dehydrogenation of propane in La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fiber membrane reactor. Catalysis Today, 2019, 330, 135-141.	2.2	6
459	Antiperovskite FeNNi2Co and FeNNi3 nanosheets as a non-enzymatic electrochemical sensor for highly sensitive detection of glucose. Journal of Electroanalytical Chemistry, 2021, 884, 115072.	1.9	6
460	Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning. Energy, 2022, 239, 122320.	4.5	6
461	Modeling study of oxygen permeation through an electronically shortâ€circuited YSZâ€based asymmetric hollow fiber membrane. AICHE Journal, 2017, 63, 3491-3500.	1.8	5
462	Electrochemical performance and stability of nano-structured Co/PdO-co-impregnated Y2O3 stabilized ZrO2 cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 6978-6987.	3.8	5
463	Modeling and optimization of refinery hydrogen network – a new strategy to linearize power equation of new compressor. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 948-959.	0.8	5
464	MATLAB-based project assessment in process modelling unit: A case study from Swinburne University of Technology Sarawak Campus. Education for Chemical Engineers, 2020, 33, 17-26.	2.8	5
465	Pine‣eafâ€Shaped αâ€Fe ₂ O ₃ Micro/Nanostructures with a Preferred Orientation along the (110) Plane for Efficient Reversible Lithium Storage. ChemElectroChem, 2017, 4, 2278-2285.	1.7	5
466	Characterization of hybrid organic and inorganic functionalised membranes for proton conduction. Solid State Ionics, 2008, 179, 477-482.	1.3	4
467	A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells. Energy Procedia, 2019, 158, 1660-1665.	1.8	4
468	Thermogravimetric analyses (TGA) of three oil palm biomass pyrolysis: Kinetics and reaction mechanisms. IOP Conference Series: Materials Science and Engineering, 2020, 778, 012100.	0.3	4

#	Article	IF	CITATIONS
469	Learning permeability and fluidisation concepts via open-ended laboratory experiments. Education for Chemical Engineers, 2020, 32, 72-81.	2.8	4
470	Perovskite Materials in Electrocatalysis. Materials Horizons, 2020, , 209-250.	0.3	4
471	Oxygen permeation simulation of La _{0.} <scp>₈Ca₀</scp> _. <scp>₂Fe_{0hollow fiber membrane at different modes and flow configurations. AICHE Journal, 2022, 68, e17508.}</scp>	> <b \$@>><	sub #. <
472	Kinetic and equilibrium adsorption study of anionic dyes using oil palm trunk-derived activated carbon. Materials Today: Proceedings, 2022, 64, 1627-1638.	0.9	4
473	A Comparative Structure and Performance Study of La[sub 1â^'x]Sr[sub x]CoO[sub 3â^'d] and La[sub 1â^'x]Sr[sub x]Co[sub 0.9]Nb[sub 0.1]O[sub 3â^'d] (x=0.5, 0.7, 0.9, and 1.0) Oxygen Permeable Mixed Conductors. Journal of the Electrochemical Society, 2011, 158, H299.	1.3	3
474	Scandium-doped barium ceria ferrites-based composite mixed conducting hollow fiber membranes for H2 and O2 permeation. Journal of Industrial and Engineering Chemistry, 2021, 107, 100-100.	2.9	3
475	Effect of electrolyte parameters on the discharge characteristics of planar zincâ€air flow battery with polymer gel electrolyte as separator. Energy Storage, 2022, 4, e304.	2.3	3
476	Novel Electrode Materials and Redoxâ€Active Electrolyte for Highâ€Performance Supercapacitor. ChemElectroChem, 2022, 9, .	1.7	3
477	Dehydrogenation Coupling of Methane Using Catalyst-Loaded Proton-Conducting Perovskite Hollow Fiber Membranes. Membranes, 2022, 12, 191.	1.4	3
478	Proton conductive composite membranes. International Journal of Nanotechnology, 2007, 4, 597.	0.1	2
479	Reply to the comment on "Acid Green 25 removal from wastewater by organo-bentonite from Pacitan" by R. Koswojo, R. P. Utomo, YH. Ju, A. Ayucitra, F. E. Soetaredjo, J. Sunarso, S. Ismadji [Applied Clay Science 48 (2010) 81–86]. Applied Clay Science, 2010, 50, 165-166.	2.6	2
480	Cathodes for IT-SOFCs. Green Chemistry and Sustainable Technology, 2016, , 59-126.	0.4	2
481	Characterization of LaO·6SrO·4CoO3-δ oxygen selective hollow fiber made from acetate precursor-derived powder. Ceramics International, 2020, 46, 3744-3749.	2.3	2
482	Bi-functional oxygen electrocatalysts based on Palladium oxide-Ruthenium oxide composites. Materials Research Society Symposia Proceedings, 2012, 1491, 13.	0.1	1
483	CHAPTER 2. Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs). RSC Energy and Environment Series, 0, , 26-55.	0.2	1
484	A comparative study on targeting CO2 emissions reduction from small-scale utility system. IOP Conference Series: Materials Science and Engineering, 2018, 429, 012081.	0.3	1
485	Systematic Method to Synthesise Optimum Hydrogen Network for Integration of Pyrolysis-Based Bio-refinery and Existing Petroleum Refinery. Process Integration and Optimization for Sustainability, 2020, 4, 309-324.	1.4	1
486	Modeling and simulation study of oxygen permeation in La0.8Ca0.2Fe0.95O3-δ-Ag hollow fiber membrane module. Materials Today: Proceedings, 2021, , .	0.9	1

#	Article	IF	CITATIONS
487	High Temperature Oxygen Separation Using Dense Ceramic Membranes. , 2015, , 1-27.		1
488	Control design for throughput improvement of fuel cell-integrated solar heated membrane desalination system. Chemical Engineering and Processing: Process Intensification, 2022, 174, 108868.	1.8	1
489	Multi-objective Optimisation Using Fuzzy and Weighted Sum Approach for Natural Gas Dehydration with Consideration of Regional Climate. Process Integration and Optimization for Sustainability, 2022, 6, 845-862.	1.4	1
490	Electrolyte Materials for IT-SOFCs. Green Chemistry and Sustainable Technology, 2016, , 15-57.	0.4	0
491	Cu/ZnO Catalysts: Cu/ZnO Catalysts Derived from Bimetallic Metal–Organic Framework for Dimethyl Ether Synthesis from Syngas with Enhanced Selectivity and Stability (Small 14/2020). Small, 2020, 16, 2070074.	5.2	0
492	High-Temperature Oxygen Separation Using Dense Ceramic Membranes. , 2021, , 1-33.		0
493	High Temperature Oxygen Separation Using Dense Ceramic Membranes. , 2017, , 2681-2706.		0
494	Tuning the properties of flash-reduced graphene oxide electrodes for supercapacitor applications. , 2019, , .		0
495	A mixed integer nonlinear programming approach for integrated bio-refinery and petroleum refinery topology optimization. Chemical Product and Process Modeling, 2020, .	0.5	0
496	High-Temperature Oxygen Separation Using Dense Ceramic Membranes. , 2022, , 1725-1757.		0

29