Michael Downey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4901680/publications.pdf

Version: 2024-02-01

567144 526166 1,194 27 15 27 citations h-index g-index papers 36 36 36 1841 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Molecular Metabolism, 2022, 61, 101494.	3.0	28
2	$\label{lem:decomposition} \mbox{Ddp1 Cooperates with Ppx1 to Counter a Stress Response Initiated by Nonvacuolar Polyphosphate.} \\ \mbox{MBio, 2022, 13, .}$	1.8	10
3	Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194608.	0.9	23
4	Model systems for studying polyphosphate biology: a focus on microorganisms. Current Genetics, 2021, 67, 331-346.	0.8	26
5	The promises of lysine polyphosphorylation as a regulatory modification in mammals are tempered by conceptual and technical challenges. BioEssays, 2021, 43, e2100058.	1.2	10
6	Targeting Polyphosphate Kinases in the Fight against Pseudomonas aeruginosa. MBio, 2021, 12, e0147721.	1.8	3
7	Vtc5 Is Localized to the Vacuole Membrane by the Conserved AP-3 Complex to Regulate Polyphosphate Synthesis in Budding Yeast. MBio, 2021, 12, e0099421.	1.8	4
8	Proteins required for vacuolar function are targets of lysine polyphosphorylation in yeast. FEBS Letters, 2020, 594, 21-30.	1.3	17
9	A Broad Response to Intracellular Long-Chain Polyphosphate in Human Cells. Cell Reports, 2020, 33, 108318.	2.9	33
10	From underlying chemistry to therapeutic potential: open questions in the new field of lysine polyphosphorylation. Current Genetics, 2019, 65, 57-64.	0.8	16
11	Heart failure drug proscillaridin A targets MYC overexpressing leukemia through global loss of lysine acetylation. Journal of Experimental and Clinical Cancer Research, 2019, 38, 251.	3 . 5	27
12	SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Molecular Metabolism, 2019, 25, 35-49.	3.0	30
13	A Stringent Analysis of Polyphosphate Dynamics in <i>Escherichia coli</i> . Journal of Bacteriology, 2019, 201, .	1.0	8
14	A synthetic non-histone substrate to study substrate targeting by the Gcn5 HAT and sirtuin HDACs. Journal of Biological Chemistry, 2019, 294, 6227-6239.	1.6	9
15	Nonhistone targets of KAT2A and KAT2B implicated in cancer biology. Biochemistry and Cell Biology, 2019, 97, 30-45.	0.9	29
16	A Screen for Candidate Targets of Lysine Polyphosphorylation Uncovers a Conserved Network Implicated in Ribosome Biogenesis. Cell Reports, 2018, 22, 3427-3439.	2.9	61
17	A screen for novel targets casts polyphosphorylation of lysine as a common postâ€translational modification. FASEB Journal, 2018, 32, 791.12.	0.2	O
18	Nicotinamide Suppresses the DNA Damage Sensitivity of <i>Saccharomyces cerevisiae</i> Independently of Sirtuin Deacetylases. Genetics, 2016, 204, 569-579.	1.2	6

#	ARTICLE	IF	CITATIONS
19	Building a KATalogue of acetyllysine targeting and function. Briefings in Functional Genomics, 2016, 15, 109-118.	1.3	21
20	Acetylome Profiling Reveals Overlap in the Regulation of Diverse Processes by Sirtuins, Gcn5, and Esa1. Molecular and Cellular Proteomics, 2015, 14, 162-176.	2.5	59
21	Polymerase Stalling during Replication, Transcription and Translation. Current Biology, 2014, 24, R445-R452.	1.8	36
22	Gcn5 and Sirtuins Regulate Acetylation of the Ribosomal Protein Transcription Factor Ifh1. Current Biology, 2013, 23, 1638-1648.	1.8	43
23	Repair Scaffolding Reaches New Heights at Blocked Replication Forks. Molecular Cell, 2010, 39, 162-164.	4.5	2
24	A Genome-Wide Screen Identifies the Evolutionarily Conserved KEOPS Complex as a Telomere Regulator. Cell, 2006, 124, 1155-1168.	13.5	158
25	Chromatin and DNA repair: the benefits of relaxation. Nature Cell Biology, 2006, 8, 9-10.	4.6	39
26	A phosphatase complex that dephosphorylates \hat{I}^3H2AX regulates DNA damage checkpoint recovery. Nature, 2006, 439, 497-501.	13.7	439
27	γH2AX as a Checkpoint Maintenance Signal. Cell Cycle, 2006, 5, 1376-1381.	1.3	50