
Matthew T Bernards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4901445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement and mechanisms of MC3T3â€E1 osteoblastâ€like cell adhesion to albumin through calcium exposure. Biotechnology and Applied Biochemistry, 2022, 69, 492-502.	3.1	11
2	A Robust Approach to In Situ Exsolve Highly Dispersed and Stable Electrocatalysts. Small, 2022, 18, e2105741.	10.0	2
3	Paired Simulations and Experimental Investigations into the Calcium-Dependent Conformation of Albumin. Journal of Chemical Information and Modeling, 2022, 62, 1282-1293.	5.4	7
4	Electrochemical Reduction of CO ₂ on Copper-Based Electrocatalyst Supported on MWCNTs with Different Functional Groups. Energy & Fuels, 2022, 36, 5833-5842.	5.1	7
5	Spontaneously Restoring Specific Bioaffinity of RGD in Linear RGD-containing Peptides by Conjugation with Zwitterionic Dendrimers. Acta Biomaterialia, 2022, 148, 61-72.	8.3	5
6	CO2 adsorption by polyamine-based protic ionic liquid-functionalized mesoporous silica: regenerability and influence of flue gas contaminants. Journal of Materials Science, 2021, 56, 3024-3034.	3.7	3
7	Sequence-based peptide identification, generation, and property prediction with deep learning: a review. Molecular Systems Design and Engineering, 2021, 6, 406-428.	3.4	17
8	Hydrocyclone Separation in Combination with Mature Separation Techniques to Treat Produced Water. , 2021, , .		0
9	Effects of chloride substitution on physical, mechanical, and biological properties of hydroxyapatite. Ceramics International, 2021, 47, 13207-13215.	4.8	6
10	Squarate-Calcium Metal–Organic Framework for Molecular Sieving of CO ₂ from Flue Gas with High Water Vapor Resistance. Energy & Fuels, 2021, 35, 13900-13907.	5.1	10
11	Synthesis of a zwitterionic N-Ser–Ser-C dimethacrylate cross-linker and evaluation in polyampholyte hydrogels. Biomaterials Science, 2021, 9, 5508-5518.	5.4	2
12	Assessment of the performance of nonfouling polymer hydrogels utilizing citizen scientists. PLoS ONE, 2021, 16, e0261817.	2.5	1
13	Dendrimer-Based Biocompatible Zwitterionic Micelles for Efficient Cellular Internalization and Enhanced Antitumor Effects. ACS Applied Polymer Materials, 2020, 2, 159-171.	4.4	18
14	Surface lattice oxygen activation via Zr4+ cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1â^'xCr2O4 catalysts for enhanced NH3-SCR performance. Chemical Engineering Journal, 2020, 380, 122397.	12.7	44
15	Insights on the mechanism of enhanced selective catalytic reduction of NO with NH3 over Zr-doped MnCr2O4: A combination of in situ DRIFTS and DFT. Chemical Engineering Journal, 2020, 386, 123956.	12.7	35
16	Degradation of gas-phase o-xylene via combined non-thermal plasma and Fe doped LaMnO3 catalysts: Byproduct control. Journal of Hazardous Materials, 2020, 387, 121750.	12.4	40
17	Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomaterialia, 2020, 116, 84-104.	8.3	87
18	Enhancement of the Fouling Resistance of Zwitterion Coated Ceramic Membranes. Membranes, 2020, 10, 210	3.0	4

#	Article	IF	CITATIONS
19	Screening and Performance Evaluation of Triethylenetetramine Nonaqueous Solutions for CO ₂ Capture with Microwave Regeneration. Energy & Fuels, 2020, 34, 11270-11281.	5.1	15
20	Enhanced SO ₂ Resistance of Tetraethylenepentammonium Nitrate Protic Ionic Liquid-Functionalized SBA-15 during CO ₂ Capture from Flue Gas. Energy & Fuels, 2020, 34, 8628-8634.	5.1	7
21	Enhanced Biocompatibility of Polyampholyte Hydrogels. Langmuir, 2020, 36, 3292-3299.	3.5	13
22	Three-Dimensional Nitrogen-Doped Graphene Aerogel-Supported MnO Nanoparticles as Efficient Electrocatalysts for CO ₂ Reduction to CO. ACS Sustainable Chemistry and Engineering, 2020, 8, 4983-4994.	6.7	32
23	Understanding the co-effects of manganese and cobalt on the enhanced SCR performance for Mn _x Co _{1â^*x} Cr ₂ O ₄ spinel-type catalysts. Catalysis Science and Technology, 2020, 10, 4752-4765.	4.1	26
24	Evaluation of chlorine substituted hydroxyapatite (ClHAP)/polydopamine composite coatings on Ti64. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110799.	5.0	10
25	Oxidation-induced restructuring of copper sulfides for enhanced performance in CO2 electroreduction. Journal of CO2 Utilization, 2020, 39, 101169.	6.8	8
26	Synergistic Enhancement of CO ₂ Adsorption Capacity and Kinetics in Triethylenetetrammonium Nitrate Protic Ionic Liquid Functionalized SBA-15. Energy & Fuels, 2019, 33, 8967-8975.	5.1	19
27	An alternative model for simulating water between two monolayer surfaces. Journal of Molecular Liquids, 2019, 290, 111284.	4.9	0
28	CO2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica. Journal of CO2 Utilization, 2019, 34, 606-615.	6.8	53
29	Impacts of cross-linker chain length on the physical properties of polyampholyte hydrogels. Biointerphases, 2019, 14, 031002.	1.6	10
30	Mechanisms of Xylene Isomer Oxidation by Non-thermal Plasma via Paired Experiments and Simulations. Plasma Chemistry and Plasma Processing, 2019, 39, 863-876.	2.4	4
31	Lysozyme sorption by pure-silica zeolite MFI films. Materials Today Communications, 2019, 19, 352-359.	1.9	7
32	Phase-Change Mechanism for Capturing CO ₂ into an Environmentally Benign Nonaqueous Solution: A Combined NMR and Molecular Dynamics Simulation Study. Energy & Fuels, 2019, 33, 474-483.	5.1	29
33	Key features and updates for Origin 2018. Journal of Cheminformatics, 2018, 10, 5.	6.1	86
34	In situ regeneration of commercial NH3-SCR catalysts with high-temperature water vapor. Catalysis Communications, 2018, 116, 57-61.	3.3	26
35	Modification of Polysulfone (PSF) Hollow Fiber Membrane (HFM) with Zwitterionic or Charged Polymers. Industrial & Engineering Chemistry Research, 2017, 56, 7576-7584.	3.7	17
36	Probing the influence of SIBLING proteins on collagen-I fibrillogenesis and denaturation. Connective Tissue Research, 2017, 59, 1-13.	2.3	5

MATTHEW T BERNARDS

#	Article	IF	CITATIONS
37	Polyampholyte Hydrogels in Biomedical Applications. Gels, 2017, 3, 41.	4.5	44
38	Evaluation of High Density Algal Cultivation for Secondary Wastewater Polishing. Water Environment Research, 2016, 88, 47-53.	2.7	22
39	Tunable multifunctional tissue engineering scaffolds composed of three omponent polyampholyte polymers. Journal of Applied Polymer Science, 2016, 133, .	2.6	19
40	Impact of Magnesium Oxide Preparation Conditions on Iodine Adsorption Capacity. Nuclear Science and Engineering, 2015, 181, 310-317.	1.1	4
41	PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing. Sensors, 2015, 15, 18040-18060.	3.8	32
42	Surface protonation/deprotonation controlled instant affinity switch of nano drug vehicle (NDV) for pH triggered tumor cell targeting. Biomaterials, 2015, 62, 116-127.	11.4	49
43	Characterizing Drug Release from Nonfouling Polyampholyte Hydrogels. Langmuir, 2015, 31, 13402-13409.	3.5	15
44	Evaluation of Anaerobic/Anoxic/Oxic (A ² /O) and Reverse A ² /O Processes in Biological Nutrient Removal. Water Environment Research, 2014, 86, 2186-2193.	2.7	14
45	Development of Zwitterionic Polymer-Based Doxorubicin Conjugates: Tuning the Surface Charge To Prolong the Circulation and Reduce Toxicity. Langmuir, 2014, 30, 3764-3774.	3.5	50
46	Recent biomedical advances with polyampholyte polymers. Journal of Applied Polymer Science, 2014, 131, .	2.6	64
47	Polyampholyte polymers as a versatile zwitterionic biomaterial platform. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1479-1488.	3.5	44
48	Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor. Bioresource Technology, 2014, 153, 383-387.	9.6	113
49	Multifunctional Polyampholyte Hydrogels with Fouling Resistance and Protein Conjugation Capacity. Biomacromolecules, 2013, 14, 3112-3122.	5.4	61
50	Fate and toxicity of melamine in activated sludge treatment systems after a long-term sludge adaptation. Water Research, 2013, 47, 2307-2314.	11.3	37
51	Mineralization induction effects of osteopontin, bone sialoprotein, and dentin phosphoprotein on a biomimetic collagen substrate. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1571-1581.	4.0	70
52	Nonfouling Hydrogels Formed from Charged Monomer Subunits. Journal of Physical Chemistry B, 2012, 116, 14346-14352.	2.6	43
53	Tailoring the Protein Adsorption Properties of Whispering Gallery Mode Optical Biosensors. Langmuir, 2012, 28, 15743-15750.	3.5	51
54	Adhesion of MC3T3â€E1 cells bound to dentin phosphoprotein specifically bound to collagen type I. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2492-2498.	4.0	9

MATTHEW T BERNARDS

#	Article	IF	CITATIONS
55	Nonfouling polyampholyte polymer brushes with protein conjugation capacity. Colloids and Surfaces B: Biointerfaces, 2012, 93, 195-201.	5.0	41
56	pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials, 2010, 31, 2919-2925.	11.4	159
57	Hydration of "Nonfouling―Functional Groups. Journal of Physical Chemistry B, 2009, 113, 197-201.	2.6	91
58	Adhesion of MC3T3‣1 cells to bone sialoprotein and bone osteopontin specifically bound to collagen I. Journal of Biomedical Materials Research - Part A, 2008, 86A, 779-787.	4.0	28
59	pHâ€induced conformation changes of adsorbed vitronectin maximize its bovine aortic endothelial cell binding ability. Journal of Biomedical Materials Research - Part A, 2008, 87A, 505-514.	4.0	16
60	MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 2008, 64, 236-247.	5.0	69
61	Nonfouling Polymer Brushes via Surface-Initiated, Two-Component Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 4216-4219.	4.8	170
62	Molecular Simulation Studies of Protein Interactions with Zwitterionic Phosphorylcholine Self-Assembled Monolayers in the Presence of Water. Langmuir, 2008, 24, 10358-10364.	3.5	319
63	Molecular simulation studies of nanoscale friction between phosphorylcholine self-assembled monolayer surfaces: Correlation between surface hydration and friction. Journal of Chemical Physics, 2007, 127, 084708.	3.0	13
64	Development of Biocompatible Interpenetrating Polymer Networks Containing a Sulfobetaine-Based Polymer and a Segmented Polyurethane for Protein Resistance. Biomacromolecules, 2007, 8, 122-127.	5.4	132
65	Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers. Journal of Chemical Physics, 2006, 125, 214704.	3.0	76
66	Molecular simulation studies of the structure of phosphorylcholine self-assembled monolayers. Journal of Chemical Physics, 2006, 125, 174714.	3.0	41