Seth Cohen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4900994/seth-cohen-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

78 24,075 270 149 h-index g-index citations papers 26,577 318 7.91 9.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
270	Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition <i>Chemical Science</i> , 2022 , 13, 2128-2136	9.4	O
269	Computational Prediction of the Binding Pose of Metal-Binding Pharmacophores ACS Medicinal Chemistry Letters, 2022 , 13, 428-435	4.3	0
268	Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18261-18271	16.4	6
267	Synthesis of tetranuclear rhenium(I) tricarbonyl metallacycles. <i>Dalton Transactions</i> , 2021 , 50, 16147-167	l 5 453	1
266	Evaluating Metal-Ligand Interactions of Metal-Binding Isosteres Using Model Complexes. <i>Inorganic Chemistry</i> , 2021 , 60, 17161-17172	5.1	О
265	Controlled Two-Dimensional Alignment of Metal-Organic Frameworks in Polymer Films. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3703-3706	16.4	5
264	Rel Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARS-CoV-2 Main Cysteine Protease. <i>Angewandte Chemie</i> , 2021 , 133, 10811-10818	3.6	2
263	Re Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARS-CoV-2 Main Cysteine Protease. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10716-10723	16.4	19
262	Hydroxypyridinethione Inhibitors of Human Insulin-Degrading Enzyme. ChemMedChem, 2021, 16, 1775-	1 3 7. 8 7	2
261	Strong, Ductile MOFPoly(urethane urea) Composites. <i>Chemistry of Materials</i> , 2021 , 33, 3164-3171	9.6	6
260	Mimicking the Electron Transport Chain and Active Site of [FeFe] Hydrogenases in One Metal-Organic Framework: Factors That Influence Charge Transport. <i>Journal of the American</i> Chemical Society, 2021 , 143, 7991-7999	16.4	6
259	Simulation Meets Experiment: Unraveling the Properties of Water in Metal Organic Frameworks through Vibrational Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12451-12460	3.8	3
258	Spectroscopic and biochemical characterization of metallo-Elactamase IMP-1 with dicarboxylic, sulfonyl, and thiol inhibitors. <i>Bioorganic and Medicinal Chemistry</i> , 2021 , 40, 116183	3.4	2
257	Metal Complexes as Antiviral Agents for SARS-CoV-2. ChemBioChem, 2021, 22, 2600-2607	3.8	12
256	25 Jahre retikulīje Chemie. <i>Angewandte Chemie</i> , 2021 , 133, 24142	3.6	O
255	Remote Detection of HCN, HF, and Nerve Agent Vapors Based on Self-Referencing, Dye-Impregnated Porous Silicon Photonic Crystals. <i>ACS Sensors</i> , 2021 , 6, 418-428	9.2	2
254	Photorelease of a metal-binding pharmacophore from a Ru(II) polypyridine complex. <i>Dalton Transactions</i> , 2021 , 50, 2757-2765	4.3	3

(2020-2021)

253	F-Tagged metal binding pharmacophores for NMR screening of metalloenzymes. <i>Chemical Communications</i> , 2021 , 57, 4934-4937	5.8	О
252	Metal complexes for therapeutic applications. <i>Trends in Chemistry</i> , 2021 , 3, 523-534	14.8	10
251	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021 , 60, 23946-23974	16.4	50
250	Exploration of the 2,3-dihydroisoindole pharmacophore for inhibition of the influenza virus PA endonuclease. <i>Bioorganic Chemistry</i> , 2021 , 116, 105388	5.1	
249	The electrochemical reduction of a flexible Mn(II) salen-based metal-organic framework. <i>Dalton Transactions</i> , 2021 , 50, 12821-12825	4.3	
248	Spray-Coating of Catalytically Active MOF-Polythiourea through Postsynthetic Polymerization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13984-13989	16.4	21
247	Evaluation of 3-Dimensionality in Approved and Experimental Drug Space. <i>ACS Medicinal Chemistry Letters</i> , 2020 , 11, 1292-1298	4.3	10
246	Spray-Coating of Catalytically Active MOF P olythiourea through Postsynthetic Polymerization. <i>Angewandte Chemie</i> , 2020 , 132, 14088-14093	3.6	7
245	Probing the mechanisms of inhibition for various inhibitors of metallo-Elactamases VIM-2 and NDM-1. <i>Journal of Inorganic Biochemistry</i> , 2020 , 210, 111123	4.2	12
244	Room temperature aqueous synthesis of UiO-66 derivatives via postsynthetic exchange. <i>Dalton Transactions</i> , 2020 , 49, 8841-8845	4.3	5
243	Liquid-Phase Applications of Metal Drganic Framework Mixed-Matrix Membranes Prepared from Poly(ethylene-co-vinyl acetate). ACS Applied Polymer Materials, 2020, 2, 2063-2069	4.3	5
242	An Exceptionally Stable Metal-Organic Framework Constructed from Chelate-Based Metal-Organic Polyhedra. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6907-6912	16.4	27
241	Postsynthetic Modification: An Enabling Technology for the Advancement of Metal-Organic Frameworks. <i>ACS Central Science</i> , 2020 , 6, 1046-1057	16.8	99
240	Effect of heterocycle content on metal binding isostere coordination. Chemical Science, 2020, 11, 6907-	69.14	4
239	High-Throughput Screening of MOFs for Breakdown of V-Series Nerve Agents. <i>ACS Applied Materials & Acs Applied Materials & Acs Applied</i>	9.5	11
238	Iminodiacetic Acid as a Novel Metal-Binding Pharmacophore for New Delhi Metallo-Elactamase Inhibitor Development. <i>ChemMedChem</i> , 2020 , 15, 1272-1282	3.7	11
237	Structure of the Polymer Backbones in polyMOF Materials. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10863-10868	16.4	10
236	MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. <i>Chemical Reviews</i> , 2020 , 120, 8267-8302	68.1	247

235	Identification of Adenosine Deaminase Inhibitors by Metal-binding Pharmacophore Screening. <i>ChemMedChem</i> , 2020 , 15, 2151-2156	3.7	4
234	Free-standing metal-organic framework (MOF) monolayers by self-assembly of polymer-grafted nanoparticles. <i>Chemical Science</i> , 2020 , 11, 8433-8437	9.4	11
233	Catch and Anchor Approach To Combat Both Toxicity and Longevity of Botulinum Toxin A. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 11100-11120	8.3	10
232	Inside polyMOFs: layered structures in polymer-based metal-organic frameworks. <i>Chemical Science</i> , 2020 , 11, 10523-10528	9.4	3
231	Insights into the Structure and Dynamics of Metal-Organic Frameworks via Transmission Electron Microscopy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 17224-17235	16.4	21
230	SAR Exploration of Tight-Binding Inhibitors of Influenza Virus PA Endonuclease. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 9438-9449	8.3	16
229	Block co-polyMOFs: morphology control of polymer-MOF hybrid materials. <i>Chemical Science</i> , 2019 , 10, 1746-1753	9.4	47
228	Investigation of Dipicolinic Acid Isosteres for the Inhibition of Metallo-Lactamases. <i>ChemMedChem</i> , 2019 , 14, 1271-1282	3.7	16
227	Pressure promoted low-temperature melting of metal-organic frameworks. <i>Nature Materials</i> , 2019 , 18, 370-376	27	74
226	Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	57
225	Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation. <i>Chemical Communications</i> , 2019 , 55, 5367-5370	5.8	40
224	Polymer Infiltration into Metal-Organic Frameworks in Mixed-Matrix Membranes Detected in Situ by NMR. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7589-7595	16.4	66
223	Metal-Binding Pharmacophore Library Yields the Discovery of a Glyoxalase 1 Inhibitor. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 1609-1625	8.3	20
222	Polyacids as Modulators for the Synthesis of UiO-66. <i>Australian Journal of Chemistry</i> , 2019 , 72, 848	1.2	6
221	Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. <i>Chemical Science</i> , 2019 , 11, 1216-1225	9.4	51
220	Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation. <i>Chemical Communications</i> , 2019 , 55, 3481-3484	5.8	39
219	Flux melting of metal-organic frameworks. <i>Chemical Science</i> , 2019 , 10, 3592-3601	9.4	37
218	Self-Assembly of Metal-Organic Framework (MOF) Nanoparticle Monolayers and Free-Standing Multilayers. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20000-20003	16.4	38

217	Targeting Metalloenzymes for Therapeutic Intervention. <i>Chemical Reviews</i> , 2019 , 119, 1323-1455	68.1	109
216	NylonMOF Composites through Postsynthetic Polymerization. <i>Angewandte Chemie</i> , 2019 , 131, 2358-23	63 .6	17
215	Nylon-MOF Composites through Postsynthetic Polymerization. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2336-2340	16.4	90
214	Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2985-2994	16.4	84
213	Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1348-1357	16.4	36
212	Understanding the origins of metal-organic framework/polymer compatibility. <i>Chemical Science</i> , 2018 , 9, 315-324	9.4	107
211	Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition. <i>Journal of Biological Inorganic Chemistry</i> , 2018 , 23, 1129-1138	3.7	13
210	Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors. <i>Inorganic Chemistry</i> , 2018 , 57, 9538-9543	5.1	18
209	Analytical STEM Investigation of the Post-Synthetic Modification (PMS) of Metal-Organic Frameworks (MOFs): Metal- and Ligand-Exchange in UiO-66. <i>Microscopy and Microanalysis</i> , 2018 , 24, 197	′6-∙₹97	1 ¹
208	Epidithiodiketopiperazines Inhibit Protein Degradation by Targeting Proteasome Deubiquitinase Rpn11. <i>Cell Chemical Biology</i> , 2018 , 25, 1350-1358.e9	8.2	22
207	A MetalDrganic Framework with Exceptional Activity for CH Bond Amination. <i>Angewandte Chemie</i> , 2018 , 130, 520-524	3.6	7
206	A Metal-Organic Framework with Exceptional Activity for C-H Bond Amination. <i>Angewandte Chemie</i>		
	- International Edition, 2018 , 57, 511-515	16.4	44
205		3.6	9
205	- International Edition, 2018, 57, 511-515 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. Angewandte		
	- International Edition, 2018, 57, 511-515 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. Angewandte Chemie, 2018, 130, 15208-15218 polyMOF Formation from Kinked Polymer Ligands via ortho-Substitution. Israel Journal of Chemistry	3.6	9
204	- International Edition, 2018, 57, 511-515 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. Angewandte Chemie, 2018, 130, 15208-15218 polyMOF Formation from Kinked Polymer Ligands via ortho-Substitution. Israel Journal of Chemistry, 2018, 58, 1123-1126 Supramolecular Metallopolymers: From Linear Materials to Infinite Networks. Angewandte Chemie -	3.6 3.4 16.4	9
204	- International Edition, 2018, 57, 511-515 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. Angewandte Chemie, 2018, 130, 15208-15218 polyMOF Formation from Kinked Polymer Ligands via ortho-Substitution. Israel Journal of Chemistry, 2018, 58, 1123-1126 Supramolecular Metallopolymers: From Linear Materials to Infinite Networks. Angewandte Chemie - International Edition, 2018, 57, 14992-15001 Gas Absorption and Pore Breathing of Metal-Organic Frameworks Studied Using in situ	3.6 3.4 16.4	9 8 76

199	High-throughput screening of solid-state catalysts for nerve agent degradation. <i>Chemical Communications</i> , 2018 , 54, 5768-5771	5.8	40
198	Electroactive Co(iii) salen metal complexes and the electrophoretic deposition of their porous organic polymers onto glassy carbon <i>RSC Advances</i> , 2018 , 8, 24128-24142	3.7	14
197	The Postsynthetic Renaissance in Porous Solids. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2855-2863	16.4	311
196	Hierarchical structure and porosity in UiO-66 polyMOFs. <i>Chemical Communications</i> , 2017 , 53, 3058-3061	5.8	51
195	Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. <i>Nature Chemical Biology</i> , 2017 , 13, 486-493	11.7	88
194	The effect of metalloprotein inhibitors on cellular metal ion content and distribution. <i>Metallomics</i> , 2017 , 9, 250-257	4.5	6
193	Discovery of an Inhibitor of the Proteasome Subunit Rpn11. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 1343-1361	8.3	50
192	Effect of donor atom identity on metal-binding pharmacophore coordination. <i>Journal of Biological Inorganic Chemistry</i> , 2017 , 22, 605-613	3.7	7
191	Photocatalytic metalBrganic frameworks for organic transformations. <i>CrystEngComm</i> , 2017 , 19, 4126-4	133.63	97
190	Metal-Organic Frameworks as Micromotors with Tunable Engines and Brakes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 611-614	16.4	79
189	Coordinative Alignment To Achieve Ordered Guest Molecules in a Versatile Molecular Crystalline Sponge. <i>Crystal Growth and Design</i> , 2017 , 17, 6174-6177	3.5	13
188	Isoreticular expansion of polyMOFs achieves high surface area materials. <i>Chemical Communications</i> , 2017 , 53, 10684-10687	5.8	39
187	Substituent Effects on the Coordination Chemistry of Metal-Binding Pharmacophores. <i>Inorganic Chemistry</i> , 2017 , 56, 11721-11728	5.1	2
186	Pore Breathing of Metal-Organic Frameworks by Environmental Transmission Electron Microscopy. Journal of the American Chemical Society, 2017 , 139, 13973-13976	16.4	43
185	A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes. <i>Accounts of Chemical Research</i> , 2017 , 50, 2007-2016	24.3	28
184	Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-Elactamase-1. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 7267-7283	8.3	94
183	High MOF loading in mixed-matrix membranes utilizing styrene/butadiene copolymers. <i>Chemical Communications</i> , 2016 , 52, 14376-14379	5.8	32
182	MetalBrganic frameworks for membrane-based separations. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	434

(2015-2016)

181	Design and synthesis of squaramide-based MOFs as efficient MOF-supported hydrogen-bonding organocatalysts. <i>Chemical Communications</i> , 2016 , 52, 8585-8	5.8	46
180	Fragment-Based Identification of Influenza Endonuclease Inhibitors. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 6444-54	8.3	37
179	Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. <i>Chemical Science</i> , 2016 , 7, 2711-2716	9.4	115
178	Polymer-Metal-Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. <i>Journal of the American Chemical Society</i> , 2016 , 138, 920-5	16.4	184
177	Dual-responsive nanoparticles release cargo upon exposure to matrix metalloproteinase and reactive oxygen species. <i>Chemical Communications</i> , 2016 , 52, 2126-8	5.8	23
176	Metal-organic frameworks constructed from crown ether-based 1,4-benzenedicarboxylic acid derivatives. <i>Dalton Transactions</i> , 2016 , 45, 3063-9	4.3	19
175	Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9646-54	16.4	47
174	Toward "metalloMOFzymes": Metal-Organic Frameworks with Single-Site Metal Catalysts for Small-Molecule Transformations. <i>Inorganic Chemistry</i> , 2016 , 55, 7281-90	5.1	82
173	Photocatalytic Metal-Organic Frameworks for Selective 2,2,2-Trifluoroethylation of Styrenes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12320-3	16.4	102
172	Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up. <i>Dalton Transactions</i> , 2015 , 44, 14019-26	4.3	74
171	Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework. <i>Inorganic Chemistry</i> , 2015 , 54, 6821-8	5.1	246
		5.1	
170	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-7	16.4	159
170 169	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials.		159
	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-7 Photocatalytic metal-organic frameworks for the aerobic oxidation of arylboronic acids. Chemical	16.4	
169	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-7 Photocatalytic metal-organic frameworks for the aerobic oxidation of arylboronic acids. Chemical Communications, 2015, 51, 9880-3 Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release. Journal of	16.4 5.8	109
169 168	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-7 Photocatalytic metal-organic frameworks for the aerobic oxidation of arylboronic acids. Chemical Communications, 2015, 51, 9880-3 Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release. Journal of Medicinal Chemistry, 2015, 58, 4812-21 A bifunctional, site-isolated metal-organic framework-based tandem catalyst. Inorganic Chemistry,	16.4 5.8 8.3	109
169 168 167	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-7 Photocatalytic metal-organic frameworks for the aerobic oxidation of arylboronic acids. Chemical Communications, 2015, 51, 9880-3 Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release. Journal of Medicinal Chemistry, 2015, 58, 4812-21 A bifunctional, site-isolated metal-organic framework-based tandem catalyst. Inorganic Chemistry, 2015, 54, 3134-8 Exploring hydrogen peroxide responsive thiazolidinone-based prodrugs. Chemical Communications,	16.4 5.8 8.3 5.1	109 30 61

163	Observing the Self-assembly of Metal-Organic Frameworks by In-Situ Liquid Cell TEM. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2445-2446	0.5	2
162	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. <i>Angewandte Chemie</i> , 2015 , 127, 6250-6255	3.6	38
161	In Situ Modification of Metal©rganic Frameworks in Mixed-Matrix Membranes. <i>Angewandte Chemie</i> , 2015 , 127, 9157-9160	3.6	56
160	In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9029-32	16.4	306
159	Investigating the Selectivity of Metalloenzyme Inhibitors in the Presence of Competing Metalloproteins. <i>ChemMedChem</i> , 2015 , 10, 1733-8	3.7	12
158	Characterization of core-shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry. <i>Analyst, The</i> , 2015 , 140, 1510-5	5	11
157	Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7322-8	16.4	155
156	Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. <i>Chemical Communications</i> , 2015 , 51, 5735-8	5.8	271
155	Metalation of a thiocatechol-functionalized Zr(IV)-based metal-organic framework for selective C-H functionalization. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2191-4	16.4	210
154	MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4738-4744	13	130
153	Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4965-73	16.4	227
152	Metalloprotein Inhibitors 2014 , 375-403		5
151	A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites. <i>Chemical Communications</i> , 2014 , 50, 4810-2	5.8	176
150	The use of a rigid tritopic phosphonic ligand for the synthesis of a robust honeycomb-like layered zirconium phosphonate framework. <i>Chemical Communications</i> , 2014 , 50, 5737-40	5.8	45
149	Inhibition of the lymphoid tyrosine phosphatase: the effect of zinc(II) ions and chelating ligand fragments on enzymatic activity. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2014 , 24, 4019-22	2.9	6
148	Exploring the influence of the protein environment on metal-binding pharmacophores. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 7126-35	8.3	24
147	Modulating H2 sorption in metal-organic frameworks via ordered functional groups. <i>Chemical Communications</i> , 2014 , 50, 12154-7	5.8	10
146	Exploration of chemically cross-linked metal-organic frameworks. <i>Inorganic Chemistry</i> , 2014 , 53, 7014-9	5.1	26

145	'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5400-6	16.4	17
144	In-Situ Liquid Transmission Electron Microscopy (TEM) for the analysis of Metal Organic Frameworks (MOFs). <i>Microscopy and Microanalysis</i> , 2014 , 20, 1614-1615	0.5	1
143	Structural dynamics inside a functionalized metal-organic framework probed by ultrafast 2D IR spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18442-7	11.5	65
142	Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16997-7003	16.4	437
141	The influence of nitro groups on the topology and gas sorption property of extended Zn(II)-paddlewheel MOFs. <i>CrystEngComm</i> , 2013 , 15, 9304	3.3	32
140	Investigating the selectivity of metalloenzyme inhibitors. Journal of Medicinal Chemistry, 2013, 56, 7997	-8 .907	78
139	Dioxole functionalized metal-organic frameworks. <i>Dalton Transactions</i> , 2013 , 42, 4013-8	4.3	9
138	Synthesis, breathing, and gas sorption study of the first isoreticular mixed-linker phosphonate based metal-organic frameworks. <i>Chemical Communications</i> , 2013 , 49, 1315-7	5.8	8o
137	Antagonism of a zinc metalloprotease using a unique metal-chelating scaffold: tropolones as inhibitors of P. aeruginosa elastase. <i>Chemical Communications</i> , 2013 , 49, 3197-9	5.8	37
136	Chemically crosslinked isoreticular metal-organic frameworks. <i>Chemical Communications</i> , 2013 , 49, 3200)-<u>5</u>2 8	34
135	Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. <i>Inorganic Chemistry</i> , 2013 , 52, 4011-6	5.1	184
134	Readily accessible fluorescent probes for sensitive biological imaging of hydrogen peroxide. <i>ChemBioChem</i> , 2013 , 14, 593-8	3.8	19
133	Self-assembled supramolecular clusters based on phosphines and coinage metals: tetrahedra, helicates, and mesocates. <i>Inorganic Chemistry</i> , 2013 , 52, 7862-72	5.1	28
132	Development of a high-throughput screen and its use in the discovery of Streptococcus pneumoniae immunoglobulin A1 protease inhibitors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10014-7	16.4	13
131	Metalloprotein-inhibitor binding: human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site. <i>Inorganic Chemistry</i> , 2013 , 52, 12207-15	5.1	26
130	Cyclometalated metal-organic frameworks as stable and reusable heterogeneous catalysts for allylic N-alkylation of amines. <i>Chemical Communications</i> , 2013 , 49, 6128-30	5.8	49
129	Site-selective cyclometalation of a metalorganic framework. <i>Chemical Science</i> , 2013 , 4, 601-605	9.4	47
128	Evaluating prodrug strategies for esterase-triggered release of alcohols. <i>ChemMedChem</i> , 2013 , 8, 1662-	3 .7	13

127	Ice cream rounds. Academic Medicine, 2013 , 88, 66	3.9	1
126	Functional group effects on metal-organic framework topology. <i>Chemical Communications</i> , 2012 , 48, 9370-2	5.8	42
125	Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors. <i>Chemical Communications</i> , 2012 , 48, 5259-61	5.8	47
124	Spinal matrix metalloproteinase 3 mediates inflammatory hyperalgesia via a tumor necrosis factor-dependent mechanism. <i>Neuroscience</i> , 2012 , 200, 199-210	3.9	8
123	Discovery, development, and functionalization of Zr(IV)-based metal@rganic frameworks. <i>CrystEngComm</i> , 2012 , 14, 4096-4104	3.3	253
122	Tuning the adsorption properties of UiO-66 via ligand functionalization. <i>Langmuir</i> , 2012 , 28, 15606-13	4	388
121	Postsynthetic ligand and cation exchange in robust metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18082-8	16.4	606
120	Investigating chelating sulfonamides and their use in metalloproteinase inhibitors. <i>Dalton Transactions</i> , 2012 , 41, 6507-15	4.3	20
119	Functional tolerance in an isoreticular series of highly porous metal-organic frameworks. <i>Dalton Transactions</i> , 2012 , 41, 6277-82	4.3	17
118	Postsynthetic methods for the functionalization of metal-organic frameworks. <i>Chemical Reviews</i> , 2012 , 112, 970-1000	68.1	1744
118		68.1 5.1	1744 54
	2012, 112, 970-1000 Single-atom ligand changes affect breathing in an extended metal-organic framework. <i>Inorganic</i>		
117	2012, 112, 970-1000 Single-atom ligand changes affect breathing in an extended metal-organic framework. <i>Inorganic Chemistry</i> , 2012, 51, 5671-6 Near-UV photo-induced modification in isoreticular metalorganic frameworks. <i>Journal of Materials</i>		54
117	Single-atom ligand changes affect breathing in an extended metal-organic framework. <i>Inorganic Chemistry</i> , 2012 , 51, 5671-6 Near-UV photo-induced modification in isoreticular metal®rganic frameworks. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10188-10194 Postsynthetic ligand exchange as a route to functionalization of therttmetal®rganic frameworks.	5.1 9·4	54
117 116 115	Single-atom ligand changes affect breathing in an extended metal-organic framework. <i>Inorganic Chemistry</i> , 2012 , 51, 5671-6 Near-UV photo-induced modification in isoreticular metalorganic frameworks. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10188-10194 Postsynthetic ligand exchange as a route to functionalization of thert(metalorganic frameworks. <i>Chemical Science</i> , 2012 , 3, 126-130	5.1 9·4	54313577
117 116 115	Single-atom ligand changes affect breathing in an extended metal-organic framework. <i>Inorganic Chemistry</i> , 2012, 51, 5671-6 Near-UV photo-induced modification in isoreticular metalBrganic frameworks. <i>Journal of Materials Chemistry</i> , 2012, 22, 10188-10194 Postsynthetic ligand exchange as a route to functionalization of IhertImetalBrganic frameworks. <i>Chemical Science</i> , 2012, 3, 126-130 Supramolecular Tetrahedra of Phosphines and Coinage Metals. <i>Angewandte Chemie</i> , 2012, 124, 5196-5 Supramolecular tetrahedra of phosphines and coinage metals. <i>Angewandte Chemie - International</i>	5.1 9.4 19%	54313577
117 116 115 114 113	Single-atom ligand changes affect breathing in an extended metal-organic framework. <i>Inorganic Chemistry</i> , 2012, 51, 5671-6 Near-UV photo-induced modification in isoreticular metalorganic frameworks. <i>Journal of Materials Chemistry</i> , 2012, 22, 10188-10194 Postsynthetic ligand exchange as a route to functionalization of IhertImetalorganic frameworks. <i>Chemical Science</i> , 2012, 3, 126-130 Supramolecular Tetrahedra of Phosphines and Coinage Metals. <i>Angewandte Chemie</i> , 2012, 124, 5196-5 Supramolecular tetrahedra of phosphines and coinage metals. <i>Angewandte Chemie - International Edition</i> , 2012, 51, 5106-9 3-Hydroxy-1-alkyl-2-methylpyridine-4(1H)-thiones: Inhibition of the Pseudomonas aeruginosa	9.4 19 %	5431357734

(2010-2011)

109	Identifying chelators for metalloprotein inhibitors using a fragment-based approach. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 591-602	8.3	106
108	Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal-organic frameworks. <i>Chemical Communications</i> , 2011 , 47, 7629-31	5.8	67
107	Tandem postsynthetic modification of metal-organic frameworks using an inverse-electron-demand Diels-Alder reaction. <i>Inorganic Chemistry</i> , 2011 , 50, 10534-6	5.1	50
106	Targeting metalloproteins by fragment-based lead discovery. <i>Chemical Biology and Drug Design</i> , 2011 , 78, 211-23	2.9	13
105	Postsynthetic modification of metal-organic frameworksa progress report. <i>Chemical Society Reviews</i> , 2011 , 40, 498-519	58.5	936
104	Activation of sulfonate ester based matrix metalloproteinase proinhibitors by hydrogen peroxide. Journal of Biological Inorganic Chemistry, 2011 , 16, 313-23	3.7	16
103	Dual Mode EPR Studies of a Kramers ion: High-Spin Co(II) in 4-, 5- and 6-Coordination. <i>Applied Magnetic Resonance</i> , 2011 , 40, 501-511	0.8	15
102	Supramolecules to the Rescue! 2011 , 177-195		
101	Metal®rganic Framework Regioisomers Based on Bifunctional Ligands. <i>Angewandte Chemie</i> , 2011 , 123, 12401-12404	3.6	6
100	Metal-organic framework regioisomers based on bifunctional ligands. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 12193-6	16.4	52
99		16.4 5.8	52 54
	Investigation of self-immolative linkers in the design of hydrogen peroxide activated		
99	Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors. <i>Chemical Communications</i> , 2011 , 47, 7968-70 Microwave-assisted cyanation of an aryl bromide directly on a metal-organic framework. <i>Inorganic</i>	5.8	54
99 98	Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors. <i>Chemical Communications</i> , 2011 , 47, 7968-70 Microwave-assisted cyanation of an aryl bromide directly on a metal-organic framework. <i>Inorganic Chemistry</i> , 2011 , 50, 729-31	5.8 5.1	54 69 281
99 98 97	Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors. <i>Chemical Communications</i> , 2011 , 47, 7968-70 Microwave-assisted cyanation of an aryl bromide directly on a metal-organic framework. <i>Inorganic Chemistry</i> , 2011 , 50, 729-31 Modifying MOFs: new chemistry, new materials. <i>Chemical Science</i> , 2010 , 1, 32 Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic	5.8 5.1 9.4	54 69 281
99 98 97 96	Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors. <i>Chemical Communications</i> , 2011 , 47, 7968-70 Microwave-assisted cyanation of an aryl bromide directly on a metal-organic framework. <i>Inorganic Chemistry</i> , 2011 , 50, 729-31 Modifying MOFs: new chemistry, new materials. <i>Chemical Science</i> , 2010 , 1, 32 Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4560-1 Illuminating metal-ion sensors: benzimidazolesulfonamide metal complexes. <i>Inorganic Chemistry</i> ,	5.8 5.1 9.4 16.4 5.1	54 69 281 420
99 98 97 96 95	Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors. <i>Chemical Communications</i> , 2011 , 47, 7968-70 Microwave-assisted cyanation of an aryl bromide directly on a metal-organic framework. <i>Inorganic Chemistry</i> , 2011 , 50, 729-31 Modifying MOFs: new chemistry, new materials. <i>Chemical Science</i> , 2010 , 1, 32 Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4560-1 Illuminating metal-ion sensors: benzimidazolesulfonamide metal complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 10226-8	5.8 5.1 9.4 16.4 5.1	54 69 281 420 15

91	Hydrogen-bond rigidified BODIPY dyes. <i>Dalton Transactions</i> , 2010 , 39, 957-62	4.3	18
90	Postsynthetic diazeniumdiolate formation and NO release from MOFs. <i>CrystEngComm</i> , 2010 , 12, 2335	3.3	83
89	Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification. <i>Inorganic Chemistry</i> , 2010 , 49, 8086-91	5.1	105
88	Modular, active, and robust Lewis acid catalysts supported on a metal-organic framework. <i>Inorganic Chemistry</i> , 2010 , 49, 6766-74	5.1	88
87	To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2010 , 1803, 72-94	4.9	199
86	Chelator fragment libraries for targeting metalloproteinases. <i>ChemMedChem</i> , 2010 , 5, 195-9	3.7	53
85	Bidentate Zinc chelators for alpha-carbonic anhydrases that produce a trigonal bipyramidal coordination geometry. <i>ChemMedChem</i> , 2010 , 5, 1609-15	3.7	24
84	Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification. <i>Chemistry - A European Journal</i> , 2010 , 16, 212-7	4.8	126
83	Photochemical Activation of a Metal©rganic Framework to Reveal Functionality. <i>Angewandte Chemie</i> , 2010 , 122, 9924-9927	3.6	27
82	Generating reactive MILs: isocyanate- and isothiocyanate-bearing MILs through postsynthetic modification. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4644-8	16.4	108
81	Hydrogen peroxide activated matrix metalloproteinase inhibitors: a prodrug approach. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6795-7	16.4	96
80	Photochemical activation of a metal-organic framework to reveal functionality. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9730-3	16.4	145
79	The Use of Metalloligands in Metal-Organic Frameworks. <i>Progress in Inorganic Chemistry</i> , 2009 , 335-378		57
78	Engineering a metal-organic framework catalyst by using postsynthetic modification. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7424-7	16.4	220
77	Synthesis of hydroxypyrone- and hydroxythiopyrone-based matrix metalloproteinase inhibitors: developing a structure-activity relationship. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009 , 19, 1970-6	5 ^{2.9}	21
76	Postsynthetic modification of metal-organic frameworks. <i>Chemical Society Reviews</i> , 2009 , 38, 1315-29	58.5	1573
75	Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. <i>Inorganic Chemistry</i> , 2009 , 48, 296-306	5.1	213
74	Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16675-7	16.4	199

(2007-2009)

73	Characterization and structure of the manganese-responsive transcriptional regulator ScaR. <i>Biochemistry</i> , 2009 , 48, 10308-20	3.2	41
72	Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks. <i>Inorganic Chemistry</i> , 2009 , 48, 7341-9	5.1	180
71	Thioamide hydroxypyrothiones supersede amide hydroxypyrothiones in potency against anthrax lethal factor. <i>Journal of Medicinal Chemistry</i> , 2009 , 52, 1063-74	8.3	42
70	Effects of novel semiselective matrix metalloproteinase inhibitors on ex vivo cardiac structure-function. <i>Journal of Cardiovascular Pharmacology</i> , 2009 , 53, 452-61	3.1	3
69	Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8508-17	16.4	335
68	Covalent modification of a metal-organic framework with isocyanates: probing substrate scope and reactivity. <i>Chemical Communications</i> , 2008 , 3366-8	5.8	112
67	Diamidodipyrrins: versatile bipyrrolic ligands with multiple metal binding modes. <i>Inorganic Chemistry</i> , 2008 , 47, 10533-41	5.1	20
66	A macrophage cell model for selective metalloproteinase inhibitor design. <i>ChemBioChem</i> , 2008 , 9, 2087	-9.5	10
65	Zinc-binding groups modulate selective inhibition of MMPs. <i>ChemMedChem</i> , 2008 , 3, 812-20	3.7	110
64	Tandem modification of metal-organic frameworks by a postsynthetic approach. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4699-702	16.4	207
63	Rare examples of transition-metal-main-group metal heterometallic metal-organic frameworks from gallium and indium dipyrrinato complexes and silver salts: synthesis and framework variability. <i>Inorganic Chemistry</i> , 2007 , 46, 11213-23	5.1	116
62	Postsynthetic covalent modification of a neutral metal-organic framework. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12368-9	16.4	516
61	The design of inhibitors for medicinally relevant metalloproteins. ChemMedChem, 2007, 2, 152-71	3.7	116
60	New approaches for medicinal applications of bioinorganic chemistry. <i>Current Opinion in Chemical Biology</i> , 2007 , 11, 115-20	9.7	88
59	Characterization and evaluation of pyrone and tropolone chelators for use in metalloprotein inhibitors. <i>Inorganica Chimica Acta</i> , 2007 , 360, 264-272	2.7	15
58	Enantiopure vs. racemic metalloligands: impact on metal-organic framework structure and synthesis. <i>Chemical Communications</i> , 2007 , 4881-3	5.8	109
57	Preparation and characterization of asymmetric alpha-alkoxy dipyrrin ligands and their metal complexes. <i>Dalton Transactions</i> , 2007 , 1067-74	4.3	30
56	Conformational studies of the manganese transport regulator (MntR) from Bacillus subtilis using deuterium exchange mass spectrometry. <i>Journal of Biological Inorganic Chemistry</i> , 2007 , 12, 699-709	3.7	20

55	Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence. <i>Journal of the American Chemical Society</i> , 2007 , 129, 77-83	16.4	244
54	Efficient synthesis of 5-amido-3-hydroxy-4-pyrones as inhibitors of matrix metalloproteinases. <i>Organic Letters</i> , 2007 , 9, 2517-20	6.2	26
53	Evaluation and binding-mode prediction of thiopyrone-based inhibitors of anthrax lethal factor. <i>ChemMedChem</i> , 2006 , 1, 694-7	3.7	32
52	Flavothionato metal complexes: implications for the use of hydroxyflavothiones as green pesticides. <i>Chemical Communications</i> , 2006 , 203-5	5.8	12
51	A new role for old ligands: discerning chelators for zinc metalloproteinases. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3156-7	16.4	77
50	Topological control in heterometallic metal-organic frameworks by anion templating and metalloligand design. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15255-68	16.4	365
49	Tris(pyrone) chelates of Gd(III) as high solubility MRI-CA. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2222-3	16.4	31
48	Model complexes of cobalt-substituted matrix metalloproteinases: tools for inhibitor design. <i>Inorganic Chemistry</i> , 2006 , 45, 7306-15	5.1	46
47	Metal binding studies and EPR spectroscopy of the manganese transport regulator MntR. <i>Biochemistry</i> , 2006 , 45, 15359-72	3.2	89
46	Luminescent dipyrrinato complexes of trivalent group 13 metal ions. <i>Inorganic Chemistry</i> , 2006 , 45, 106	58 § 97	108
46 45	Luminescent dipyrrinato complexes of trivalent group 13 metal ions. <i>Inorganic Chemistry</i> , 2006 , 45, 106 A novel heterocyclic atom exchange reaction with Lawesson's reagent: a one-pot synthesis of dithiomaltol. <i>Chemical Communications</i> , 2006 , 206-8	58 §9 7	108
	A novel heterocyclic atom exchange reaction with Lawesson's reagent: a one-pot synthesis of		
45	A novel heterocyclic atom exchange reaction with Lawesson's reagent: a one-pot synthesis of dithiomaltol. <i>Chemical Communications</i> , 2006 , 206-8 Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors:	5.8	23
45	A novel heterocyclic atom exchange reaction with Lawesson's reagent: a one-pot synthesis of dithiomaltol. <i>Chemical Communications</i> , 2006 , 206-8 Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. <i>Journal of Biological Inorganic Chemistry</i> , 2006 , 11, 131-8 Synthesis, structure and spectroscopy of new thiopyrone and hydroxypyridinethione	5.8 3·7	23
45 44 43	A novel heterocyclic atom exchange reaction with Lawesson's reagent: a one-pot synthesis of dithiomaltol. <i>Chemical Communications</i> , 2006 , 206-8 Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. <i>Journal of Biological Inorganic Chemistry</i> , 2006 , 11, 131-8 Synthesis, structure and spectroscopy of new thiopyrone and hydroxypyridinethione transition-metal complexes. <i>Dalton Transactions</i> , 2005 , 2588-96 Metal-induced structural organization and stabilization of the metalloregulatory protein MntR.	5.8 3.7 4.3	23672637
45 44 43 42	A novel heterocyclic atom exchange reaction with Lawesson's reagent: a one-pot synthesis of dithiomaltol. <i>Chemical Communications</i> , 2006 , 206-8 Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. <i>Journal of Biological Inorganic Chemistry</i> , 2006 , 11, 131-8 Synthesis, structure and spectroscopy of new thiopyrone and hydroxypyridinethione transition-metal complexes. <i>Dalton Transactions</i> , 2005 , 2588-96 Metal-induced structural organization and stabilization of the metalloregulatory protein MntR. <i>Biochemistry</i> , 2005 , 44, 3380-9 Potent, selective pyrone-based inhibitors of stromelysin-1. <i>Journal of the American Chemical Society</i>	5.8 3.7 4.3	23672637
45 44 43 42 41	A novel heterocyclic atom exchange reaction with Lawesson's reagent: a one-pot synthesis of dithiomaltol. <i>Chemical Communications</i> , 2006 , 206-8 Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. <i>Journal of Biological Inorganic Chemistry</i> , 2006 , 11, 131-8 Synthesis, structure and spectroscopy of new thiopyrone and hydroxypyridinethione transition-metal complexes. <i>Dalton Transactions</i> , 2005 , 2588-96 Metal-induced structural organization and stabilization of the metalloregulatory protein MntR. <i>Biochemistry</i> , 2005 , 44, 3380-9 Potent, selective pyrone-based inhibitors of stromelysin-1. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14148-9 Structural and spectroscopic study of reactions between chelating zinc-binding groups and mimics of the matrix metalloproteinase and disintegrin metalloprotease catalytic sites: the coordination	5.8 3.7 4.3 3.2	2367263778

(2003-2005)

37	Self-assembly of heteroleptic [Cu(dipyrrinato)(hfacac)] complexes directed by fluorine-fluorine interactions. <i>Inorganic Chemistry</i> , 2005 , 44, 4139-41	5.1	69
36	A bioinorganic perspective on matrix metalloproteinase inhibition. <i>Current Topics in Medicinal Chemistry</i> , 2004 , 4, 1551-73	3	68
35	Self-assembly of two distinct supramolecular motifs in a single crystalline framework. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2385-8	16.4	115
34	Self-Assembly of Two Distinct Supramolecular Motifs in a Single Crystalline Framework. <i>Angewandte Chemie</i> , 2004 , 116, 2439-2442	3.6	12
33	Helical coordination polymers and cyclic dimers formed from heteroleptic thioether-dipyrrinato copper(II) complexes. <i>Chemical Communications</i> , 2004 , 2662-3	5.8	52
32	New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8388-9	16.4	139
31	Heteroleptic copper dipyrromethene complexes: synthesis, structure, and coordination polymers. <i>Inorganic Chemistry</i> , 2004 , 43, 1242-9	5.1	88
30	Addressing lead toxicity: complexation of lead(II) with thiopyrone and hydroxypyridinethione O,S mixed chelators. <i>Inorganic Chemistry</i> , 2004 , 43, 6534-6	5.1	48
29	Using model complexes to augment and advance metalloproteinase inhibitor design. <i>Inorganic Chemistry</i> , 2004 , 43, 3038-47	5.1	41
28	Competition studies in horse spleen ferritin probed by a kinetically inert inhibitor, [Cr(TREN)(H(2)O)(OH)](2+), and a highly luminescent Tb(III) reagent. <i>Journal of Biological Inorganic Chemistry</i> , 2003 , 8, 195-205	3.7	11
27	From Model Complexes to Metalloprotein Inhibition: A Synergistic Approach to Structure-Based Drug Discovery. <i>Angewandte Chemie</i> , 2003 , 115, 3902-3904	3.6	6
26	Synthesis, structure, and spectroscopy of phenylacetylenylene rods incorporating meso-substituted dipyrrin ligands. <i>Chemistry - A European Journal</i> , 2003 , 9, 4661-9	4.8	64
25	From model complexes to metalloprotein inhibition: a synergistic approach to structure-based drug discovery. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3772-4	16.4	24
24	Examination of novel zinc-binding groups for use in matrix metalloproteinase inhibitors. <i>Inorganic Chemistry</i> , 2003 , 42, 3423-30	5.1	100
23	DNA-binding and oligomerization studies of the manganese(II) metalloregulatory protein MntR from Bacillus subtilis. <i>Biochemistry</i> , 2003 , 42, 12634-42	3.2	49
22	Metal complexes of the trans-influencing ligand thiomaltol. <i>Inorganic Chemistry</i> , 2003 , 42, 7455-9	5.1	42
21	Stable lanthanide luminescence agents highly emissive in aqueous solution: multidentate 2-hydroxyisophthalamide complexes of Sm(3+), Eu(3+), Tb(3+), Dy(3+). <i>Journal of the American Chemical Society</i> , 2003 , 125, 13324-5	16.4	404
20	Synthesis and structure of the hexameric, dodecanuclear metallamacrocycle [(5-methyl-3-phenylpyrazole)2Zn2(OCH2CH2S)]6. <i>Chemical Communications</i> , 2003 , 1278-9	5.8	23

19	[(TpMe,Ph)2Zn2(H3O2)]ClO4: a new H3O2 species relevant to zinc proteinases. <i>Inorganica Chimica Acta</i> , 2002 , 337, 459-462	2.7	34
18	Dipyrromethene complexes of iron. <i>Inorganica Chimica Acta</i> , 2002 , 341, 12-16	2.7	51
17	2.4-A crystal structure of the asymmetric platinum complex [Pt(ammine)(cyclohexylamine)]2+ bound to a dodecamer DNA duplex. <i>Journal of Biological Chemistry</i> , 2002 , 277, 49743-9	5.4	54
16	Elucidating drug-metalloprotein interactions with tris(pyrazolyl)borate model complexes. <i>Inorganic Chemistry</i> , 2002 , 41, 5075-82	5.1	73
15	Synthesis and metal binding properties of salicylate-, catecholate-, and hydroxypyridinonate-functionalized dendrimers. <i>Chemistry - A European Journal</i> , 2001 , 7, 272-9	4.8	58
14	Effects of spectator ligands on the specific recognition of intrastrand platinum-DNA cross-links by high mobility group box and TATA-binding proteins. <i>Journal of Biological Chemistry</i> , 2001 , 276, 38774-8	o ^{5.4}	71
13	Cisplatin: from DNA damage to cancer chemotherapy. <i>Progress in Molecular Biology and Translational Science</i> , 2001 , 67, 93-130		428
12	Synthesis of homochiral tris(2-alkyl-2-aminoethyl)amine derivatives from chiral alpha-amino aldehydes and their application in the synthesis of water soluble chelators. <i>Inorganic Chemistry</i> , 2001 , 40, 3208-16	5.1	29
11	Formation of cis-diamminedichloroplatinum(II) 1,2-intrastrand cross-links on DNA is flanking-sequence independent. <i>Nucleic Acids Research</i> , 2000 , 28, 4237-43	20.1	46
10	Mixed hydroxypyridinonate ligands as iron chelators. <i>Inorganic Chemistry</i> , 2000 , 39, 4339-46	5.1	41
9	Syntheses and relaxation properties of mixed gadolinium hydroxypyridinonate MRI contrast agents. <i>Inorganic Chemistry</i> , 2000 , 39, 5747-56	5.1	83
8	HMG-domain protein recognition of cisplatin 1,2-intrastrand d(GpG) cross-links in purine-rich sequence contexts. <i>Biochemistry</i> , 2000 , 39, 11771-6	3.2	48
7	Catecholate/salicylate heteropodands: demonstration of a catecholate to salicylate coordination change. <i>Inorganic Chemistry</i> , 2000 , 39, 3624-31	5.1	29
6	Enhanced binding of the TATA-binding protein to TATA boxes containing flanking cisplatin 1,2-cross-links. <i>Biochemistry</i> , 2000 , 39, 8259-65	3.2	44
5	A Novel Salicylate-Based Macrobicycle with a "Split Personality". <i>Inorganic Chemistry</i> , 1999 , 38, 4522-45	5 29 .1	16
4	Enterobactin Protonation and Iron Release: Hexadentate Tris-Salicylate Ligands as Models for Triprotonated Ferric Enterobactin1. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6277-6286	16.4	76
3	High-Yield Synthesis of the Enterobactin Trilactone and Evaluation of Derivative Siderophore Analogs1. <i>Journal of the American Chemical Society</i> , 1997 , 119, 10093-10103	16.4	61
2	Mediation of Drosophila head development by gap-like segmentation genes. <i>Nature</i> , 1990 , 346, 482-5	50.4	246

How Reproducible are Surface Areas Calculated from the BET Equation?. *Advanced Materials*,2201502 24 12

17