Seth Cohen

List of Publications by Citations

Source: https://exaly.com/author-pdf/4900994/seth-cohen-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

78 24,075 149 270 h-index g-index citations papers 26,577 318 9.2 7.91 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
270	Postsynthetic methods for the functionalization of metal-organic frameworks. <i>Chemical Reviews</i> , 2012 , 112, 970-1000	68.1	1744
269	Postsynthetic modification of metal-organic frameworks. <i>Chemical Society Reviews</i> , 2009 , 38, 1315-29	58.5	1573
268	Postsynthetic modification of metal-organic frameworksa progress report. <i>Chemical Society Reviews</i> , 2011 , 40, 498-519	58.5	936
267	Postsynthetic ligand and cation exchange in robust metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18082-8	16.4	606
266	Isoreticular synthesis and modification of frameworks with the UiO-66 topology. <i>Chemical Communications</i> , 2010 , 46, 7700-2	5.8	584
265	Postsynthetic covalent modification of a neutral metal-organic framework. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12368-9	16.4	516
264	Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16997-7003	16.4	437
263	MetalBrganic frameworks for membrane-based separations. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	434
262	Cisplatin: from DNA damage to cancer chemotherapy. <i>Progress in Molecular Biology and Translational Science</i> , 2001 , 67, 93-130		428
261	Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4560-1	16.4	420
260	Stable lanthanide luminescence agents highly emissive in aqueous solution: multidentate 2-hydroxyisophthalamide complexes of Sm(3+), Eu(3+), Tb(3+), Dy(3+). <i>Journal of the American Chemical Society</i> , 2003 , 125, 13324-5	16.4	404
259	Tuning the adsorption properties of UiO-66 via ligand functionalization. <i>Langmuir</i> , 2012 , 28, 15606-13	4	388
258	Topological control in heterometallic metal-organic frameworks by anion templating and metalloligand design. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15255-68	16.4	365
257	Postsynthetic ligand exchange as a route to functionalization of InertImetalBrganic frameworks. <i>Chemical Science</i> , 2012 , 3, 126-130	9.4	357
256	Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8508-17	16.4	335
255	The Postsynthetic Renaissance in Porous Solids. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2855-2863	16.4	311
254	In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9029-32	16.4	306

253	Modifying MOFs: new chemistry, new materials. <i>Chemical Science</i> , 2010 , 1, 32	9.4	281
252	Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. <i>Chemical Communications</i> , 2015 , 51, 5735-8	5.8	271
251	Discovery, development, and functionalization of Zr(IV)-based metal®rganic frameworks. <i>CrystEngComm</i> , 2012 , 14, 4096-4104	3.3	253
250	MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. <i>Chemical Reviews</i> , 2020 , 120, 8267-8302	68.1	247
249	Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework. <i>Inorganic Chemistry</i> , 2015 , 54, 6821-8	5.1	246
248	Mediation of Drosophila head development by gap-like segmentation genes. <i>Nature</i> , 1990 , 346, 482-5	50.4	246
247	Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence. <i>Journal of the American Chemical Society</i> , 2007 , 129, 77-83	16.4	244
246	Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4965-73	16.4	227
245	Engineering a metal-organic framework catalyst by using postsynthetic modification. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7424-7	16.4	220
244	Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. <i>Inorganic Chemistry</i> , 2009 , 48, 296-306	5.1	213
243	Metalation of a thiocatechol-functionalized Zr(IV)-based metal-organic framework for selective C-H functionalization. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2191-4	16.4	210
242	Tandem modification of metal-organic frameworks by a postsynthetic approach. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4699-702	16.4	207
241	Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach. Journal of the American Chemical Society, 2009 , 131, 16675-7	16.4	199
240	To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2010 , 1803, 72-94	4.9	199
239	Polymer-Metal-Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. <i>Journal of the American Chemical Society</i> , 2016 , 138, 920-5	16.4	184
238	Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. <i>Inorganic Chemistry</i> , 2013 , 52, 4011-6	5.1	184
237	Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks. <i>Inorganic Chemistry</i> , 2009 , 48, 7341-9	5.1	180
236	A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites. <i>Chemical Communications</i> , 2014 , 50, 4810-2	5.8	176

235	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6152-7	16.4	159
234	Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7322-8	16.4	155
233	Photochemical activation of a metal-organic framework to reveal functionality. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9730-3	16.4	145
232	New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8388-9	16.4	139
231	Heterometallic metal-organic frameworks based on tris(dipyrrinato) coordination complexes. <i>Inorganic Chemistry</i> , 2005 , 44, 486-8	5.1	138
230	MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4738-4744	13	130
229	Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification. <i>Chemistry - A European Journal</i> , 2010 , 16, 212-7	4.8	126
228	Rare examples of transition-metal-main-group metal heterometallic metal-organic frameworks from gallium and indium dipyrrinato complexes and silver salts: synthesis and framework variability. <i>Inorganic Chemistry</i> , 2007 , 46, 11213-23	5.1	116
227	The design of inhibitors for medicinally relevant metalloproteins. ChemMedChem, 2007, 2, 152-71	3.7	116
226	Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. <i>Chemical Science</i> , 2016 , 7, 2711-2716	9.4	115
225	Self-assembly of two distinct supramolecular motifs in a single crystalline framework. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2385-8	16.4	115
224	Covalent modification of a metal-organic framework with isocyanates: probing substrate scope and reactivity. <i>Chemical Communications</i> , 2008 , 3366-8	5.8	112
223	Zinc-binding groups modulate selective inhibition of MMPs. <i>ChemMedChem</i> , 2008 , 3, 812-20	3.7	110
222	Photocatalytic metal-organic frameworks for the aerobic oxidation of arylboronic acids. <i>Chemical Communications</i> , 2015 , 51, 9880-3	5.8	109
221	Enantiopure vs. racemic metalloligands: impact on metal-organic framework structure and synthesis. <i>Chemical Communications</i> , 2007 , 4881-3	5.8	109
220	Targeting Metalloenzymes for Therapeutic Intervention. <i>Chemical Reviews</i> , 2019 , 119, 1323-1455	68.1	109
219	Generating reactive MILs: isocyanate- and isothiocyanate-bearing MILs through postsynthetic modification. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4644-8	16.4	108
218	Luminescent dipyrrinato complexes of trivalent group 13 metal ions. <i>Inorganic Chemistry</i> , 2006 , 45, 100	58 § .±97	108

(2007-2018)

217	Understanding the origins of metal-organic framework/polymer compatibility. <i>Chemical Science</i> , 2018 , 9, 315-324	9.4	107
216	Identifying chelators for metalloprotein inhibitors using a fragment-based approach. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 591-602	8.3	106
215	Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification. <i>Inorganic Chemistry</i> , 2010 , 49, 8086-91	5.1	105
214	Photocatalytic Metal-Organic Frameworks for Selective 2,2,2-Trifluoroethylation of Styrenes. Journal of the American Chemical Society, 2016 , 138, 12320-3	16.4	102
213	A chiral, heterometallic metal-organic framework derived from a tris(chelate) coordination complex. <i>Chemical Communications</i> , 2005 , 5506-8	5.8	100
212	Examination of novel zinc-binding groups for use in matrix metalloproteinase inhibitors. <i>Inorganic Chemistry</i> , 2003 , 42, 3423-30	5.1	100
211	Postsynthetic Modification: An Enabling Technology for the Advancement of Metal-Organic Frameworks. <i>ACS Central Science</i> , 2020 , 6, 1046-1057	16.8	99
210	From sensors to silencers: quinoline- and benzimidazole-sulfonamides as inhibitors for zinc proteases. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8232-3	16.4	98
209	Photocatalytic metalBrganic frameworks for organic transformations. <i>CrystEngComm</i> , 2017 , 19, 4126-4	13.6	97
208	Hydrogen peroxide activated matrix metalloproteinase inhibitors: a prodrug approach. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6795-7	16.4	96
207	Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal-organic framework. <i>Chemical Communications</i> , 2015 , 51, 16549-52	5.8	95
206	Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-Elactamase-1. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 7267-7283	8.3	94
205	Functionalization of robust Zr(IV)-based metal-organic framework films via a postsynthetic ligand exchange. <i>Chemical Communications</i> , 2015 , 51, 66-9	5.8	93
204	Nylon-MOF Composites through Postsynthetic Polymerization. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2336-2340	16.4	90
203	Metal binding studies and EPR spectroscopy of the manganese transport regulator MntR. <i>Biochemistry</i> , 2006 , 45, 15359-72	3.2	89
202	Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. <i>Nature Chemical Biology</i> , 2017 , 13, 486-493	11.7	88
201	Modular, active, and robust Lewis acid catalysts supported on a metal-organic framework. <i>Inorganic Chemistry</i> , 2010 , 49, 6766-74	5.1	88
2 00	New approaches for medicinal applications of bioinorganic chemistry. <i>Current Opinion in Chemical Biology</i> , 2007 , 11, 115-20	9.7	88

199	Heteroleptic copper dipyrromethene complexes: synthesis, structure, and coordination polymers. <i>Inorganic Chemistry</i> , 2004 , 43, 1242-9	5.1	88
198	Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2985-2994	16.4	84
197	Postsynthetic diazeniumdiolate formation and NO release from MOFs. <i>CrystEngComm</i> , 2010 , 12, 2335	3.3	83
196	Syntheses and relaxation properties of mixed gadolinium hydroxypyridinonate MRI contrast agents. <i>Inorganic Chemistry</i> , 2000 , 39, 5747-56	5.1	83
195	Toward "metalloMOFzymes": Metal-Organic Frameworks with Single-Site Metal Catalysts for Small-Molecule Transformations. <i>Inorganic Chemistry</i> , 2016 , 55, 7281-90	5.1	82
194	Synthesis, breathing, and gas sorption study of the first isoreticular mixed-linker phosphonate based metal-organic frameworks. <i>Chemical Communications</i> , 2013 , 49, 1315-7	5.8	80
193	Metal-Organic Frameworks as Micromotors with Tunable Engines and Brakes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 611-614	16.4	79
192	Investigating the selectivity of metalloenzyme inhibitors. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 7997	7- 8 . <u>9</u> 07	78
191	Potent, selective pyrone-based inhibitors of stromelysin-1. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14148-9	16.4	78
190	A new role for old ligands: discerning chelators for zinc metalloproteinases. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3156-7	16.4	77
189	Enterobactin Protonation and Iron Release: Hexadentate Tris-Salicylate Ligands as Models for Triprotonated Ferric Enterobactin1. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6277-6286	16.4	76
188	Supramolecular Metallopolymers: From Linear Materials to Infinite Networks. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14992-15001	16.4	76
187	Pressure promoted low-temperature melting of metal-organic frameworks. <i>Nature Materials</i> , 2019 , 18, 370-376	27	74
186	Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up. <i>Dalton Transactions</i> , 2015 , 44, 14019-26	4.3	74
185	Elucidating drug-metalloprotein interactions with tris(pyrazolyl)borate model complexes. <i>Inorganic Chemistry</i> , 2002 , 41, 5075-82	5.1	73
184	Effects of spectator ligands on the specific recognition of intrastrand platinum-DNA cross-links by high mobility group box and TATA-binding proteins. <i>Journal of Biological Chemistry</i> , 2001 , 276, 38774-8	o ^{5.4}	71
183	Microwave-assisted cyanation of an aryl bromide directly on a metal-organic framework. <i>Inorganic Chemistry</i> , 2011 , 50, 729-31	5.1	69
182	Self-assembly of heteroleptic [Cu(dipyrrinato)(hfacac)] complexes directed by fluorine-fluorine interactions. <i>Inorganic Chemistry</i> , 2005 , 44, 4139-41	5.1	69

(2011-2004)

181	A bioinorganic perspective on matrix metalloproteinase inhibition. <i>Current Topics in Medicinal Chemistry</i> , 2004 , 4, 1551-73	3	68
180	Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal-organic frameworks. <i>Chemical Communications</i> , 2011 , 47, 7629-31	5.8	67
179	Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. <i>Journal of Biological Inorganic Chemistry</i> , 2006 , 11, 131-8	3.7	67
178	Polymer Infiltration into Metal-Organic Frameworks in Mixed-Matrix Membranes Detected in Situ by NMR. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7589-7595	16.4	66
177	Structural dynamics inside a functionalized metal-organic framework probed by ultrafast 2D IR spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18442-7	11.5	65
176	Synthesis, structure, and spectroscopy of phenylacetylenylene rods incorporating meso-substituted dipyrrin ligands. <i>Chemistry - A European Journal</i> , 2003 , 9, 4661-9	4.8	64
175	A bifunctional, site-isolated metal-organic framework-based tandem catalyst. <i>Inorganic Chemistry</i> , 2015 , 54, 3134-8	5.1	61
174	High-Yield Synthesis of the Enterobactin Trilactone and Evaluation of Derivative Siderophore Analogs1. <i>Journal of the American Chemical Society</i> , 1997 , 119, 10093-10103	16.4	61
173	Synthesis and metal binding properties of salicylate-, catecholate-, and hydroxypyridinonate-functionalized dendrimers. <i>Chemistry - A European Journal</i> , 2001 , 7, 272-9	4.8	58
172	Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. <i>ACS Applied Materials & Defect State of the Materials and State of the Mater</i>	9.5	57
171	Emerging trends in metalloprotein inhibition. <i>Dalton Transactions</i> , 2011 , 40, 3445-54	4.3	57
170	The Use of Metalloligands in Metal-Organic Frameworks. <i>Progress in Inorganic Chemistry</i> , 2009 , 335-378		57
169	In Situ Modification of Metal©rganic Frameworks in Mixed-Matrix Membranes. <i>Angewandte Chemie</i> , 2015 , 127, 9157-9160	3.6	56
168	Single-atom ligand changes affect breathing in an extended metal-organic framework. <i>Inorganic Chemistry</i> , 2012 , 51, 5671-6	5.1	54
167	Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors. <i>Chemical Communications</i> , 2011 , 47, 7968-70	5.8	54
166	2.4-A crystal structure of the asymmetric platinum complex [Pt(ammine)(cyclohexylamine)]2+ bound to a dodecamer DNA duplex. <i>Journal of Biological Chemistry</i> , 2002 , 277, 49743-9	5.4	54
165	Chelator fragment libraries for targeting metalloproteinases. <i>ChemMedChem</i> , 2010 , 5, 195-9	3.7	53
164	Metal-organic framework regioisomers based on bifunctional ligands. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 12193-6	16.4	52

163	Helical coordination polymers and cyclic dimers formed from heteroleptic thioether-dipyrrinato copper(II) complexes. <i>Chemical Communications</i> , 2004 , 2662-3	5.8	52
162	Hierarchical structure and porosity in UiO-66 polyMOFs. <i>Chemical Communications</i> , 2017 , 53, 3058-3061	5.8	51
161	Dipyrromethene complexes of iron. <i>Inorganica Chimica Acta</i> , 2002 , 341, 12-16	2.7	51
160	Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. <i>Chemical Science</i> , 2019 , 11, 1216-1225	9.4	51
159	Discovery of an Inhibitor of the Proteasome Subunit Rpn11. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 1343-1361	8.3	50
158	Tandem postsynthetic modification of metal-organic frameworks using an inverse-electron-demand Diels-Alder reaction. <i>Inorganic Chemistry</i> , 2011 , 50, 10534-6	5.1	50
157	25 Years of Reticular Chemistry. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23946-23974	16.4	50
156	Cyclometalated metal-organic frameworks as stable and reusable heterogeneous catalysts for allylic N-alkylation of amines. <i>Chemical Communications</i> , 2013 , 49, 6128-30	5.8	49
155	DNA-binding and oligomerization studies of the manganese(II) metalloregulatory protein MntR from Bacillus subtilis. <i>Biochemistry</i> , 2003 , 42, 12634-42	3.2	49
154	Addressing lead toxicity: complexation of lead(II) with thiopyrone and hydroxypyridinethione O,S mixed chelators. <i>Inorganic Chemistry</i> , 2004 , 43, 6534-6	5.1	48
153	HMG-domain protein recognition of cisplatin 1,2-intrastrand d(GpG) cross-links in purine-rich sequence contexts. <i>Biochemistry</i> , 2000 , 39, 11771-6	3.2	48
152	Block co-polyMOFs: morphology control of polymer-MOF hybrid materials. <i>Chemical Science</i> , 2019 , 10, 1746-1753	9.4	47
151	Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors. <i>Chemical Communications</i> , 2012 , 48, 5259-61	5.8	47
150	Site-selective cyclometalation of a metalBrganic framework. <i>Chemical Science</i> , 2013 , 4, 601-605	9.4	47
149	Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9646-54	16.4	47
148	Design and synthesis of squaramide-based MOFs as efficient MOF-supported hydrogen-bonding organocatalysts. <i>Chemical Communications</i> , 2016 , 52, 8585-8	5.8	46
147	Model complexes of cobalt-substituted matrix metalloproteinases: tools for inhibitor design. <i>Inorganic Chemistry</i> , 2006 , 45, 7306-15	5.1	46
146	Formation of cis-diamminedichloroplatinum(II) 1,2-intrastrand cross-links on DNA is flanking-sequence independent. <i>Nucleic Acids Research</i> , 2000 , 28, 4237-43	20.1	46

(2016-2014)

145	The use of a rigid tritopic phosphonic ligand for the synthesis of a robust honeycomb-like layered zirconium phosphonate framework. <i>Chemical Communications</i> , 2014 , 50, 5737-40	5.8	45
144	Enhanced binding of the TATA-binding protein to TATA boxes containing flanking cisplatin 1,2-cross-links. <i>Biochemistry</i> , 2000 , 39, 8259-65	3.2	44
143	A Metal-Organic Framework with Exceptional Activity for C-H Bond Amination. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 511-515	16.4	44
142	Pore Breathing of Metal-Organic Frameworks by Environmental Transmission Electron Microscopy. Journal of the American Chemical Society, 2017 , 139, 13973-13976	16.4	43
141	Functional group effects on metal-organic framework topology. <i>Chemical Communications</i> , 2012 , 48, 9370-2	5.8	42
140	Thioamide hydroxypyrothiones supersede amide hydroxypyrothiones in potency against anthrax lethal factor. <i>Journal of Medicinal Chemistry</i> , 2009 , 52, 1063-74	8.3	42
139	Metal complexes of the trans-influencing ligand thiomaltol. <i>Inorganic Chemistry</i> , 2003 , 42, 7455-9	5.1	42
138	Characterization and structure of the manganese-responsive transcriptional regulator ScaR. <i>Biochemistry</i> , 2009 , 48, 10308-20	3.2	41
137	Using model complexes to augment and advance metalloproteinase inhibitor design. <i>Inorganic Chemistry</i> , 2004 , 43, 3038-47	5.1	41
136	Mixed hydroxypyridinonate ligands as iron chelators. <i>Inorganic Chemistry</i> , 2000 , 39, 4339-46	5.1	41
135	Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation. <i>Chemical Communications</i> , 2019 , 55, 5367-5370	5.8	40
134	High-throughput screening of solid-state catalysts for nerve agent degradation. <i>Chemical Communications</i> , 2018 , 54, 5768-5771	5.8	40
133	Isoreticular expansion of polyMOFs achieves high surface area materials. <i>Chemical Communications</i> , 2017 , 53, 10684-10687	5.8	39
132	Probing chelation motifs in HIV integrase inhibitors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 2251-6	11.5	39
131	Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation. <i>Chemical Communications</i> , 2019 , 55, 3481-3484	5.8	39
130	polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. <i>Angewandte Chemie</i> , 2015 , 127, 6250-6255	3.6	38
129	Self-Assembly of Metal-Organic Framework (MOF) Nanoparticle Monolayers and Free-Standing Multilayers. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20000-20003	16.4	38
128	Fragment-Based Identification of Influenza Endonuclease Inhibitors. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 6444-54	8.3	37

127	Antagonism of a zinc metalloprotease using a unique metal-chelating scaffold: tropolones as inhibitors of P. aeruginosa elastase. <i>Chemical Communications</i> , 2013 , 49, 3197-9	5.8	37
126	Metal-induced structural organization and stabilization of the metalloregulatory protein MntR. <i>Biochemistry</i> , 2005 , 44, 3380-9	3.2	37
125	Flux melting of metal-organic frameworks. <i>Chemical Science</i> , 2019 , 10, 3592-3601	9.4	37
124	Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1348-1357	16.4	36
123	Structural and spectroscopic study of reactions between chelating zinc-binding groups and mimics of the matrix metalloproteinase and disintegrin metalloprotease catalytic sites: the coordination chemistry of metalloprotease inhibition. <i>Inorganic Chemistry</i> , 2005 , 44, 7431-42	5.1	36
122	Multicomponent metal-organic framework membranes for advanced functional composites. <i>Chemical Science</i> , 2018 , 9, 8842-8849	9.4	36
121	Chemically crosslinked isoreticular metal-organic frameworks. Chemical Communications, 2013, 49, 320	00- 28	34
120	Supramolecular tetrahedra of phosphines and coinage metals. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5106-9	16.4	34
119	[(TpMe,Ph)2Zn2(H3O2)]ClO4: a new H3O2 species relevant to zinc proteinases. <i>Inorganica Chimica Acta</i> , 2002 , 337, 459-462	2.7	34
118	High MOF loading in mixed-matrix membranes utilizing styrene/butadiene copolymers. <i>Chemical Communications</i> , 2016 , 52, 14376-14379	5.8	32
117	The influence of nitro groups on the topology and gas sorption property of extended Zn(II)-paddlewheel MOFs. <i>CrystEngComm</i> , 2013 , 15, 9304	3.3	32
116	Evaluation and binding-mode prediction of thiopyrone-based inhibitors of anthrax lethal factor. <i>ChemMedChem</i> , 2006 , 1, 694-7	3.7	32
115	Near-UV photo-induced modification in isoreticular metal®rganic frameworks. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10188-10194		31
114	Tris(pyrone) chelates of Gd(III) as high solubility MRI-CA. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2222-3	16.4	31
113	Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release. <i>Journal of Medicinal Chemistry</i> , 2015 , 58, 4812-21	8.3	30
112	Preparation and characterization of asymmetric alpha-alkoxy dipyrrin ligands and their metal complexes. <i>Dalton Transactions</i> , 2007 , 1067-74	4.3	30
111	Exploring hydrogen peroxide responsive thiazolidinone-based prodrugs. <i>Chemical Communications</i> , 2015 , 51, 7116-9	5.8	29
110	Catecholate/salicylate heteropodands: demonstration of a catecholate to salicylate coordination change. <i>Inorganic Chemistry</i> , 2000 , 39, 3624-31	5.1	29

(2018-2001)

109	aldehydes and their application in the synthesis of water soluble chelators. <i>Inorganic Chemistry</i> , 2001 , 40, 3208-16	5.1	29	
108	A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes. <i>Accounts of Chemical Research</i> , 2017 , 50, 2007-2016	24.3	28	
107	Self-assembled supramolecular clusters based on phosphines and coinage metals: tetrahedra, helicates, and mesocates. <i>Inorganic Chemistry</i> , 2013 , 52, 7862-72	5.1	28	
106	An Exceptionally Stable Metal-Organic Framework Constructed from Chelate-Based Metal-Organic Polyhedra. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6907-6912	16.4	27	
105	Photochemical Activation of a Metal©rganic Framework to Reveal Functionality. <i>Angewandte Chemie</i> , 2010 , 122, 9924-9927	3.6	27	
104	Exploration of chemically cross-linked metal-organic frameworks. <i>Inorganic Chemistry</i> , 2014 , 53, 7014-9	5.1	26	
103	Metalloprotein-inhibitor binding: human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site. <i>Inorganic Chemistry</i> , 2013 , 52, 12207-15	5.1	26	
102	Efficient synthesis of 5-amido-3-hydroxy-4-pyrones as inhibitors of matrix metalloproteinases. Organic Letters, 2007 , 9, 2517-20	6.2	26	
101	Synthesis, structure and spectroscopy of new thiopyrone and hydroxypyridinethione transition-metal complexes. <i>Dalton Transactions</i> , 2005 , 2588-96	4.3	26	
100	Exploring the influence of the protein environment on metal-binding pharmacophores. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 7126-35	8.3	24	
99	3-Hydroxy-1-alkyl-2-methylpyridine-4(1H)-thiones: Inhibition of the Pseudomonas aeruginosa Virulence Factor LasB. <i>ACS Medicinal Chemistry Letters</i> , 2012 , 3, 668-672	4.3	24	
98	Bidentate Zinc chelators for alpha-carbonic anhydrases that produce a trigonal bipyramidal coordination geometry. <i>ChemMedChem</i> , 2010 , 5, 1609-15	3.7	24	
97	From model complexes to metalloprotein inhibition: a synergistic approach to structure-based drug discovery. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3772-4	16.4	24	
96	Dual-responsive nanoparticles release cargo upon exposure to matrix metalloproteinase and reactive oxygen species. <i>Chemical Communications</i> , 2016 , 52, 2126-8	5.8	23	
95	A novel heterocyclic atom exchange reaction with Lawesson's reagent: a one-pot synthesis of dithiomaltol. <i>Chemical Communications</i> , 2006 , 206-8	5.8	23	
94	Synthesis and structure of the hexameric, dodecanuclear metallamacrocycle [(5-methyl-3-phenylpyrazole)2Zn2(OCH2CH2S)]6. <i>Chemical Communications</i> , 2003 , 1278-9	5.8	23	
93	Epidithiodiketopiperazines Inhibit Protein Degradation by Targeting Proteasome Deubiquitinase Rpn11. <i>Cell Chemical Biology</i> , 2018 , 25, 1350-1358.e9	8.2	22	
92	Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease. Journal of Medicinal Chemistry, 2018 , 61, 10206-10217	8.3	22	

91	Spray-Coating of Catalytically Active MOF-Polythiourea through Postsynthetic Polymerization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13984-13989	16.4	21
90	Synthesis of hydroxypyrone- and hydroxythiopyrone-based matrix metalloproteinase inhibitors: developing a structure-activity relationship. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009 , 19, 1970-	6 ^{2.9}	21
89	Insights into the Structure and Dynamics of Metal-Organic Frameworks via Transmission Electron Microscopy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 17224-17235	16.4	21
88	Metal-Binding Pharmacophore Library Yields the Discovery of a Glyoxalase 1 Inhibitor. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 1609-1625	8.3	20
87	Investigating chelating sulfonamides and their use in metalloproteinase inhibitors. <i>Dalton Transactions</i> , 2012 , 41, 6507-15	4.3	20
86	Diamidodipyrrins: versatile bipyrrolic ligands with multiple metal binding modes. <i>Inorganic Chemistry</i> , 2008 , 47, 10533-41	5.1	20
85	Conformational studies of the manganese transport regulator (MntR) from Bacillus subtilis using deuterium exchange mass spectrometry. <i>Journal of Biological Inorganic Chemistry</i> , 2007 , 12, 699-709	3.7	20
84	Metal-organic frameworks constructed from crown ether-based 1,4-benzenedicarboxylic acid derivatives. <i>Dalton Transactions</i> , 2016 , 45, 3063-9	4.3	19
83	Readily accessible fluorescent probes for sensitive biological imaging of hydrogen peroxide. <i>ChemBioChem</i> , 2013 , 14, 593-8	3.8	19
82	Re Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARS-CoV-2 Main Cysteine Protease. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10716-10723	16.4	19
81	Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors. <i>Inorganic Chemistry</i> , 2018 , 57, 9538-9543	5.1	18
80		5.1	18
	57, 9538-9543	4.3	
80	57, 9538-9543 Hydrogen-bond rigidified BODIPY dyes. <i>Dalton Transactions</i> , 2010 , 39, 957-62 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active	4.3	18
8o 79	57, 9538-9543 Hydrogen-bond rigidified BODIPY dyes. <i>Dalton Transactions</i> , 2010 , 39, 957-62 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5400-6 Functional tolerance in an isoreticular series of highly porous metal-organic frameworks. <i>Dalton</i>	4·3 16.4 4·3	18
80 79 78	Hydrogen-bond rigidified BODIPY dyes. <i>Dalton Transactions</i> , 2010 , 39, 957-62 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5400-6 Functional tolerance in an isoreticular series of highly porous metal-organic frameworks. <i>Dalton Transactions</i> , 2012 , 41, 6277-82	4·3 16.4 4·3	18 17 17
80 79 78 77	Hydrogen-bond rigidified BODIPY dyes. <i>Dalton Transactions</i> , 2010 , 39, 957-62 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5400-6 Functional tolerance in an isoreticular series of highly porous metal-organic frameworks. <i>Dalton Transactions</i> , 2012 , 41, 6277-82 NylonMOF Composites through Postsynthetic Polymerization. <i>Angewandte Chemie</i> , 2019 , 131, 2358-23 SAR Exploration of Tight-Binding Inhibitors of Influenza Virus PA Endonuclease. <i>Journal of</i>	4·3 16.4 4·3	18 17 17 17

73	A Novel Salicylate-Based Macrobicycle with a "Split Personality". Inorganic Chemistry, 1999, 38, 4522-45	29 .1	16
72	Dual Mode EPR Studies of a Kramers ion: High-Spin Co(II) in 4-, 5- and 6-Coordination. <i>Applied Magnetic Resonance</i> , 2011 , 40, 501-511	0.8	15
71	Illuminating metal-ion sensors: benzimidazolesulfonamide metal complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 10226-8	5.1	15
70	Characterization and evaluation of pyrone and tropolone chelators for use in metalloprotein inhibitors. <i>Inorganica Chimica Acta</i> , 2007 , 360, 264-272	2.7	15
69	Electroactive Co(iii) salen metal complexes and the electrophoretic deposition of their porous organic polymers onto glassy carbon <i>RSC Advances</i> , 2018 , 8, 24128-24142	3.7	14
68	Coordinative Alignment To Achieve Ordered Guest Molecules in a Versatile Molecular Crystalline Sponge. <i>Crystal Growth and Design</i> , 2017 , 17, 6174-6177	3.5	13
67	Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition. <i>Journal of Biological Inorganic Chemistry</i> , 2018 , 23, 1129-1138	3.7	13
66	Development of a high-throughput screen and its use in the discovery of Streptococcus pneumoniae immunoglobulin A1 protease inhibitors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10014-7	16.4	13
65	Evaluating prodrug strategies for esterase-triggered release of alcohols. <i>ChemMedChem</i> , 2013 , 8, 1662	- 3.7	13
64	Targeting metalloproteins by fragment-based lead discovery. <i>Chemical Biology and Drug Design</i> , 2011 , 78, 211-23	2.9	13
63	Probing the mechanisms of inhibition for various inhibitors of metallo-Elactamases VIM-2 and NDM-1. <i>Journal of Inorganic Biochemistry</i> , 2020 , 210, 111123	4.2	12
62	Investigating the Selectivity of Metalloenzyme Inhibitors in the Presence of Competing Metalloproteins. <i>ChemMedChem</i> , 2015 , 10, 1733-8	3.7	12
61	Flavothionato metal complexes: implications for the use of hydroxyflavothiones as green pesticides. <i>Chemical Communications</i> , 2006 , 203-5	5.8	12
60	Self-Assembly of Two Distinct Supramolecular Motifs in a Single Crystalline Framework. <i>Angewandte Chemie</i> , 2004 , 116, 2439-2442	3.6	12
59	Metal Complexes as Antiviral Agents for SARS-CoV-2. <i>ChemBioChem</i> , 2021 , 22, 2600-2607	3.8	12
58	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials,2201502	24	12
57	High-Throughput Screening of MOFs for Breakdown of V-Series Nerve Agents. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	11
56	Iminodiacetic Acid as a Novel Metal-Binding Pharmacophore for New Delhi Metallo-Elactamase Inhibitor Development. <i>ChemMedChem</i> , 2020 , 15, 1272-1282	3.7	11

55	Characterization of core-shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry. <i>Analyst, The</i> , 2015 , 140, 1510-5	5	11
54	Enzymatic activation of a matrix metalloproteinase inhibitor. <i>Chemical Communications</i> , 2010 , 46, 1241-	· 3 5.8	11
53	Competition studies in horse spleen ferritin probed by a kinetically inert inhibitor, [Cr(TREN)(H(2)O)(OH)](2+), and a highly luminescent Tb(III) reagent. <i>Journal of Biological Inorganic Chemistry</i> , 2003 , 8, 195-205	3.7	11
52	Free-standing metal-organic framework (MOF) monolayers by self-assembly of polymer-grafted nanoparticles. <i>Chemical Science</i> , 2020 , 11, 8433-8437	9.4	11
51	Evaluation of 3-Dimensionality in Approved and Experimental Drug Space. <i>ACS Medicinal Chemistry Letters</i> , 2020 , 11, 1292-1298	4.3	10
50	Modulating H2 sorption in metal-organic frameworks via ordered functional groups. <i>Chemical Communications</i> , 2014 , 50, 12154-7	5.8	10
49	A macrophage cell model for selective metalloproteinase inhibitor design. <i>ChemBioChem</i> , 2008 , 9, 2087	'- <u>3</u> .5	10
48	Structure of the Polymer Backbones in polyMOF Materials. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10863-10868	16.4	10
47	Catch and Anchor Approach To Combat Both Toxicity and Longevity of Botulinum Toxin A. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 11100-11120	8.3	10
46	Metal complexes for therapeutic applications. <i>Trends in Chemistry</i> , 2021 , 3, 523-534	14.8	10
46 45	Metal complexes for therapeutic applications. <i>Trends in Chemistry</i> , 2021 , 3, 523-534 Dioxole functionalized metal-organic frameworks. <i>Dalton Transactions</i> , 2013 , 42, 4013-8	14.8 4·3	10
45	Dioxole functionalized metal-organic frameworks. <i>Dalton Transactions</i> , 2013 , 42, 4013-8 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. <i>Angewandte</i>	4.3	9
45 44	Dioxole functionalized metal-organic frameworks. <i>Dalton Transactions</i> , 2013 , 42, 4013-8 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. <i>Angewandte Chemie</i> , 2018 , 130, 15208-15218 Spinal matrix metalloproteinase 3 mediates inflammatory hyperalgesia via a tumor necrosis	4.3	9
45 44 43	Dioxole functionalized metal-organic frameworks. <i>Dalton Transactions</i> , 2013 , 42, 4013-8 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. <i>Angewandte Chemie</i> , 2018 , 130, 15208-15218 Spinal matrix metalloproteinase 3 mediates inflammatory hyperalgesia via a tumor necrosis factor-dependent mechanism. <i>Neuroscience</i> , 2012 , 200, 199-210 polyMOF Formation from Kinked Polymer Ligands via ortho-Substitution. <i>Israel Journal of Chemistry</i>	4.3 3.6 3.9	9 9 8
45 44 43 42	Dioxole functionalized metal-organic frameworks. <i>Dalton Transactions</i> , 2013 , 42, 4013-8 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. <i>Angewandte Chemie</i> , 2018 , 130, 15208-15218 Spinal matrix metalloproteinase 3 mediates inflammatory hyperalgesia via a tumor necrosis factor-dependent mechanism. <i>Neuroscience</i> , 2012 , 200, 199-210 polyMOF Formation from Kinked Polymer Ligands via ortho-Substitution. <i>Israel Journal of Chemistry</i> , 2018 , 58, 1123-1126 Effect of donor atom identity on metal-binding pharmacophore coordination. <i>Journal of Biological</i>	4·3 3.6 3·9	9 9 8 8
45 44 43 42 41	Dioxole functionalized metal-organic frameworks. <i>Dalton Transactions</i> , 2013 , 42, 4013-8 Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. <i>Angewandte Chemie</i> , 2018 , 130, 15208-15218 Spinal matrix metalloproteinase 3 mediates inflammatory hyperalgesia via a tumor necrosis factor-dependent mechanism. <i>Neuroscience</i> , 2012 , 200, 199-210 polyMOF Formation from Kinked Polymer Ligands via ortho-Substitution. <i>Israel Journal of Chemistry</i> , 2018 , 58, 1123-1126 Effect of donor atom identity on metal-binding pharmacophore coordination. <i>Journal of Biological Inorganic Chemistry</i> , 2017 , 22, 605-613 Spray-Coating of Catalytically Active MOFPolythiourea through Postsynthetic Polymerization.	4·3 3.6 3·9 3·4 3·7 3.6	9 9 8 8 7

(2021-2017)

37	The effect of metalloprotein inhibitors on cellular metal ion content and distribution. <i>Metallomics</i> , 2017 , 9, 250-257	4.5	6
36	Polyacids as Modulators for the Synthesis of UiO-66. Australian Journal of Chemistry, 2019 , 72, 848	1.2	6
35	Inhibition of the lymphoid tyrosine phosphatase: the effect of zinc(II) ions and chelating ligand fragments on enzymatic activity. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2014 , 24, 4019-22	2.9	6
34	Metal D rganic Framework Regioisomers Based on Bifunctional Ligands. <i>Angewandte Chemie</i> , 2011 , 123, 12401-12404	3.6	6
33	From Model Complexes to Metalloprotein Inhibition: A Synergistic Approach to Structure-Based Drug Discovery. <i>Angewandte Chemie</i> , 2003 , 115, 3902-3904	3.6	6
32	Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18261-18271	16.4	6
31	Strong, Ductile MOFPoly(urethane urea) Composites. <i>Chemistry of Materials</i> , 2021 , 33, 3164-3171	9.6	6
30	Mimicking the Electron Transport Chain and Active Site of [FeFe] Hydrogenases in One Metal-Organic Framework: Factors That Influence Charge Transport. <i>Journal of the American</i> <i>Chemical Society</i> , 2021 , 143, 7991-7999	16.4	6
29	Room temperature aqueous synthesis of UiO-66 derivatives via postsynthetic exchange. <i>Dalton Transactions</i> , 2020 , 49, 8841-8845	4.3	5
28	Liquid-Phase Applications of Metal Drganic Framework Mixed-Matrix Membranes Prepared from Poly(ethylene-co-vinyl acetate). <i>ACS Applied Polymer Materials</i> , 2020 , 2, 2063-2069	4.3	5
27	Metalloprotein Inhibitors 2014 , 375-403		5
26	Controlled Two-Dimensional Alignment of Metal-Organic Frameworks in Polymer Films. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3703-3706	16.4	5
25	Effect of heterocycle content on metal binding isostere coordination. Chemical Science, 2020, 11, 6907-	69.14	4
24	Identification of Adenosine Deaminase Inhibitors by Metal-binding Pharmacophore Screening. <i>ChemMedChem</i> , 2020 , 15, 2151-2156	3.7	4
23	Effects of novel semiselective matrix metalloproteinase inhibitors on ex vivo cardiac structure-function. <i>Journal of Cardiovascular Pharmacology</i> , 2009 , 53, 452-61	3.1	3
22	Inside polyMOFs: layered structures in polymer-based metal-organic frameworks. <i>Chemical Science</i> , 2020 , 11, 10523-10528	9.4	3
21	Simulation Meets Experiment: Unraveling the Properties of Water in Metal Drganic Frameworks through Vibrational Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12451-12460	3.8	3
20	Photorelease of a metal-binding pharmacophore from a Ru(II) polypyridine complex. <i>Dalton Transactions</i> , 2021 , 50, 2757-2765	4.3	3

19	Substituent Effects on the Coordination Chemistry of Metal-Binding Pharmacophores. <i>Inorganic Chemistry</i> , 2017 , 56, 11721-11728	5.1	2
18	Observing the Self-assembly of Metal-Organic Frameworks by In-Situ Liquid Cell TEM. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2445-2446	0.5	2
17	Rel Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARS-CoV-2 Main Cysteine Protease. <i>Angewandte Chemie</i> , 2021 , 133, 10811-10818	3.6	2
16	Hydroxypyridinethione Inhibitors of Human Insulin-Degrading Enzyme. ChemMedChem, 2021, 16, 1775-	1 <i>3</i> . 9 7	2
15	Spectroscopic and biochemical characterization of metallo-flactamase IMP-1 with dicarboxylic, sulfonyl, and thiol inhibitors. <i>Bioorganic and Medicinal Chemistry</i> , 2021 , 40, 116183	3.4	2
14	Remote Detection of HCN, HF, and Nerve Agent Vapors Based on Self-Referencing, Dye-Impregnated Porous Silicon Photonic Crystals. <i>ACS Sensors</i> , 2021 , 6, 418-428	9.2	2
13	Analytical STEM Investigation of the Post-Synthetic Modification (PMS) of Metal-Organic Frameworks (MOFs): Metal- and Ligand-Exchange in UiO-66. <i>Microscopy and Microanalysis</i> , 2018 , 24, 197	′0-₹97	1 ¹
12	In-Situ Liquid Transmission Electron Microscopy (TEM) for the analysis of Metal Organic Frameworks (MOFs). <i>Microscopy and Microanalysis</i> , 2014 , 20, 1614-1615	0.5	1
11	Ice cream rounds. <i>Academic Medicine</i> , 2013 , 88, 66	3.9	1
10	Synthesis of tetranuclear rhenium(I) tricarbonyl metallacycles. <i>Dalton Transactions</i> , 2021 , 50, 16147-161	15453	1
9	Gas Absorption and Pore Breathing of Metal-Organic Frameworks Studied Using in situ Environmental Transmission Electron Microscopy (ETEM). <i>Microscopy and Microanalysis</i> , 2018 , 24, 1880-	1881	1
8	Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition <i>Chemical Science</i> , 2022 , 13, 2128-2136	9.4	О
7	Evaluating Metal-Ligand Interactions of Metal-Binding Isosteres Using Model Complexes. <i>Inorganic Chemistry</i> , 2021 , 60, 17161-17172	5.1	O
6	25 Jahre retikulEe Chemie. <i>Angewandte Chemie</i> , 2021 , 133, 24142	3.6	O
5	F-Tagged metal binding pharmacophores for NMR screening of metalloenzymes. <i>Chemical Communications</i> , 2021 , 57, 4934-4937	5.8	O
4	Computational Prediction of the Binding Pose of Metal-Binding Pharmacophores ACS Medicinal Chemistry Letters, 2022 , 13, 428-435	4.3	O
3	Supramolecules to the Rescue! 2011 , 177-195		
2	Exploration of the 2,3-dihydroisoindole pharmacophore for inhibition of the influenza virus PA endonuclease. <i>Bioorganic Chemistry</i> , 2021 , 116, 105388	5.1	

The electrochemical reduction of a flexible Mn(II) salen-based metal-organic framework. *Dalton Transactions*, **2021**, 50, 12821-12825

4.3