
Satoshi Uchida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4900823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How does the solvent composition influence the transport properties of electrolyte solutions? LiPF ₆ and LiFSA in EC and DMC binary solvent. Physical Chemistry Chemical Physics, 2021, 23, 10875-10887.	2.8	17
2	Transport Properties of Electrolyte Solution Comprising LiPF ₆ , Ethylene Carbonate, and Propylene Carbonate. Electrochemistry, 2021, 89, 439-446.	1.4	5
3	What differentiates the transport properties of lithium electrolyte in ethylene carbonate mixed with diethylcarbonate from those mixed with dimethylcarbonate?. Journal of Power Sources, 2021, 511, 230423.	7.8	13
4	Preparation and Electrochemical Performance of Chitosan-based Gel Polymer Electrolyte Containing Ionic Liquid for Non-aqueous Electric Double Layer Capacitor. Electrochemistry, 2020, 88, 132-138.	1.4	3
5	Effect of hydrogen-gas treatment on the local structure of graphene-like graphite. Carbon, 2020, 163, 162-168.	10.3	9
6	A Potential Cathode Material for Rechargeable Potassiumâ€lon Batteries Inducing Manganese Cation and Oxygen Anion Redox Chemistry: Potassiumâ€Deficient K _{0.4} Fe _{0.5} Mn _{0.5} O ₂ . Energy Technology, 2020, 8, 2070064.	3.8	0
7	Impact of lithium-ion coordination in carbonate-based electrolyte on lithium-ion intercalation kinetics into graphite electrode. Electrochemistry Communications, 2020, 114, 106705.	4.7	5
8	Graphene-Like Graphite Negative Electrode Rapidly Chargeable at Constant Voltage. Journal of the Electrochemical Society, 2020, 167, 110518.	2.9	5
9	Electric Doubleâ€Layer Capacitors Based on Nonâ€Aqueous Electrolytes: A Comparative Study of Potassium and Quaternary Ammonium Salts. Batteries and Supercaps, 2020, 3, 392-396.	4.7	2
10	A Potential Cathode Material for Rechargeable Potassiumâ€lon Batteries Inducing Manganese Cation and Oxygen Anion Redox Chemistry: Potassiumâ€Deficient K _{0.4} Fe _{0.5} Mn _{0.5} O ₂ . Energy Technology, 2020, 8, 2000039.	3.8	8
11	Effects of Pre-Lithiation on the Electrochemical Properties of Graphene-Like Graphite. Electrochemistry, 2019, 87, 260-264.	1.4	11
12	Preparation and Characterization of Electrospun Gelatin Nanofibers for Use as Nonaqueous Electrolyte in Electric Double-Layer Capacitor. Journal of Nanotechnology, 2019, 2019, 1-11.	3.4	27
13	Preparation of thin-film electrolyte from chitosan-containing ionic liquid for application to electric double-layer capacitors. International Journal of Biological Macromolecules, 2019, 124, 1274-1280.	7.5	22
14	Preparation and characterization of gel electrolyte with bacterial cellulose coated with alternating layers of chitosan and alginate for electric double-layer capacitors. Research on Chemical Intermediates, 2018, 44, 4971-4987.	2.7	18
15	A New Prospect for Stabilization of Graphite Electrode/Electrolyte Interface in Bis(fluorosulfonyl)imide Anion-based Ionic Liquid Electrolyte. Electrochemistry, 2018, 86, 29-31.	1.4	8
16	High-performance lithium-ion capacitor composed of electrodes with porous three-dimensional current collector and bis(fluorosulfonyl)imide-based ionic liquid electrolyte. Electrochimica Acta, 2018, 276, 125-133.	5.2	14
17	In situ electron microscopy and X-ray photoelectron spectroscopy for high capacity anodes in next-generation ionic liquid-based Li batteries. Electrochimica Acta, 2018, 279, 136-142.	5.2	20
18	Visualization of Si Anode Reactions in Coin-Type Cells via Operando Scanning Electron Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 35511-35515.	8.0	26

Satoshi Uchida

#	Article	IF	CITATIONS
19	Preparation of Micropore-rich High Surface Area Activated Carbon from N-doped Carbon Precursor and its Application to Positive Electrode in Lithium-sulfur Battery. Electrochemistry, 2017, 85, 650-655.	1.4	10
20	Performance Enhancement of Rechargeable Sulfur Cathode Utilizing Microporous Activated Carbon Composite. Electrochemistry, 2017, 85, 671-674.	1.4	7
21	Lithium bis(fluorosulfonyl)imide based low ethylene carbonate content electrolyte with unusual solvation state. Journal of Power Sources, 2017, 359, 480-486.	7.8	34
22	Effect of Electrolyte Additives on Non-Nano-Si Negative Electrodes Prepared with Polyimide Binder. Journal of the Electrochemical Society, 2015, 162, A406-A412.	2.9	28
23	Electrochemical properties of non-nano-silicon negative electrodes prepared with a polyimide binder. Journal of Power Sources, 2015, 273, 118-122.	7.8	62
24	Optimized condition of high-frequency induction heating for LiFePO 4 with ideal crystal structure. Journal of Power Sources, 2013, 243, 617-621.	7.8	7
25	Novel rapid synthesis method of LiFePO4/C cathode material by high-frequency induction heating. Journal of Power Sources, 2013, 243, 481-487.	7.8	16
26	Improvement of Synthesis Method for LiFePO4/C Cathode Material by High-Frequency Induction Heating. Electrochemistry, 2012, 80, 825-828.	1.4	2