Bryan Barr

List of Publications by Citations

Source: https://exaly.com/author-pdf/4900542/bryan-barr-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 274
papers
 49,578
citations
 88
h-index
 222
g-index

 285
ext. papers
 61,243
ext. citations
 5.8
avg, IF
 5.65
L-index

#	Paper	IF	Citations
274	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
273	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
272	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
271	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
270	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
269	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
268	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
267	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. <i>Physical Review X</i> , 2019 , 9,	9.1	1169
266	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001	3.3	1098
265	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2010 , 27, 173001	3.3	869
264	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
263	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101	7.4	837
262	LIGO: the Laser Interferometer Gravitational-Wave Observatory. <i>Reports on Progress in Physics</i> , 2009 , 72, 076901	14.4	822
261	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
260	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
259	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
258	The Einstein Telescope: a third-generation gravitational wave observatory. <i>Classical and Quantum Gravity</i> , 2010 , 27, 194002	3.3	675

(2002-2020)

257	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
256	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. <i>Nature Photonics</i> , 2013 , 7, 613-619	33.9	572
255	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. <i>Astrophysical Journal Letters</i> , 2020 , 896, L44	7.9	571
254	A gravitational wave observatory operating beyond the quantum shot-noise limit. <i>Nature Physics</i> , 2011 , 7, 962-965	16.2	554
253	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
252	Properties of the Binary Black Hole Merger GW150914. <i>Physical Review Letters</i> , 2016 , 116, 241102	7.4	515
251	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
250	Exploring the sensitivity of next generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044001	3.3	454
249	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9,	9.1	423
248	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420
247	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413
246	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
245	Sensitivity studies for third-generation gravitational wave observatories. <i>Classical and Quantum Gravity</i> , 2011 , 28, 094013	3.3	382
244	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381
243	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
242	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. <i>Physical Review X</i> , 2021 , 11,	9.1	311
241	An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> , 2009 , 460, 990-4	50.4	267
240	The GEO 600 gravitational wave detector. Classical and Quantum Gravity, 2002, 19, 1377-1387	3.3	260

239	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. <i>Physical Review D</i> , 2019 , 100,	4.9	258
238	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013	3.3	256
237	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
236	Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004 , 517, 154-179	1.2	229
235	The third generation of gravitational wave observatories and their science reach. <i>Classical and Quantum Gravity</i> , 2010 , 27, 084007	3.3	214
234	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. <i>Physical Review D</i> , 2020 , 102,	4.9	212
233	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
232	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. <i>Physical Review D</i> , 2016 , 93,	4.9	208
231	Properties and Astrophysical Implications of the 150 M? Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020 , 900, L13	7.9	207
230	Tests of General Relativity with GW170817. <i>Physical Review Letters</i> , 2019 , 123, 011102	7.4	204
229	Population Properties of Compact Objects from the Second LIGOVirgo Gravitational-Wave Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7	7.9	194
229		7·9 7·4	194 188
-	Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7 GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black		
228	Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7 GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102 LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT	7.4	188
228	Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7 GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102 LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13 Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science	7·4 7·9	188
228 227 226	Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7 GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102 LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13 Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85, Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal	7·4 7·9 4·9	188 183 172
228 227 226 225	Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7 GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102 LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13 Search for gravitational waves from low mass compact binary coalescence in LIGOB sixth science run and VirgoB science runs 2 and 3. Physical Review D, 2012, 85, Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical	7·4 7·9 4·9	188 183 172 155

(2007-2010)

221	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. <i>Astrophysical Journal</i> , 2010 , 713, 671-685	4.7	140
220	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
219	Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors. <i>Physical Review D</i> , 2004 , 69,	4.9	135
218	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
217	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
216	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L39	7.9	127
215	Implications for the Origin of GRB 070201 from LIGO Observations. <i>Astrophysical Journal</i> , 2008 , 681, 1419-1430	4.7	126
214	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122
213	Analysis of LIGO data for gravitational waves from binary neutron stars. <i>Physical Review D</i> , 2004 , 69,	4.9	122
212	The GEO-HF project. Classical and Quantum Gravity, 2006, 23, S207-S214	3.3	121
211	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
210	Status of the GEO600 detector. Classical and Quantum Gravity, 2006, 23, S71-S78	3.3	120
209	Search for the isotropic stochastic background using data from Advanced LIGO second observing run. <i>Physical Review D</i> , 2019 , 100,	4.9	117
208	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. <i>Physical Review D</i> , 2008 , 77,	4.9	117
207	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. <i>Physical Review D</i> , 2007 , 76,	4.9	116
206	Search for gravitational waves from low mass binary coalescences in the first year of LIGOE S5 data. <i>Physical Review D</i> , 2009 , 79,	4.9	115
205	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. <i>Astrophysical Journal</i> , 2014 , 785, 119	4.7	109
204	Upper limits on gravitational wave emission from 78 radio pulsars. <i>Physical Review D</i> , 2007 , 76,	4.9	109

203	Limits on gravitational-wave emission from selected pulsars using LIGO data. <i>Physical Review Letters</i> , 2005 , 94, 181103	7.4	109
202	Calibration of the LIGO gravitational wave detectors in the fifth science run. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2010 , 624, 223-240	1.2	108
201	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
200	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. <i>Astrophysical Journal</i> , 2007 , 659, 918-930	4.7	107
199	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. <i>Astrophysical Journal Letters</i> , 2017 , 850, L35	7.9	104
198	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. <i>Physical Review D</i> , 2010 , 82,	4.9	100
197	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGOE fifth science run. <i>Physical Review D</i> , 2009 , 80,	4.9	100
196	All-sky search for periodic gravitational waves in LIGO S4 data. <i>Physical Review D</i> , 2008 , 77,	4.9	98
195	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
194	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010 , 722, 1504-1513	4.7	95
193	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
192	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
191	Observation of a kilogram-scale oscillator near its quantum ground state. <i>New Journal of Physics</i> , 2009 , 11, 073032	2.9	93
190	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91
189	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\textbf{Q} 010. \) Physical Review D, 2013 , 87,	4.9	91
188	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
187	Search for gravitational waves from galactic and extra-galactic binary neutron stars. <i>Physical Review D</i> , 2005 , 72,	4.9	88
186	First upper limits from LIGO on gravitational wave bursts. <i>Physical Review D</i> , 2004 , 69,	4.9	87

185	Directional limits on persistent gravitational waves using LIGO S5 science data. <i>Physical Review Letters</i> , 2011 , 107, 271102	4	85
184	Upper limit map of a background of gravitational waves. <i>Physical Review D</i> , 2007 , 76, 4.9	9	85
183	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	9	84
182	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. <i>Physical Review D</i> , 2019 , 100,	9	81
181	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. <i>Physical Review D</i> , 2010 , 81,	9	81
180	Status of GEO 600. Classical and Quantum Gravity, 2004, 21, S417-S423	3	81
179	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. <i>Physical Review D</i> , 2021 , 103,	9	81
178	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	9	80
177	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. <i>Astrophysical Journal</i> , 2010 , 715, 1453-47	4 61	79
176	A guide to LIGON irgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020 , 37, 055002	3	78
175	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. <i>Physical Review D</i> , 2018 , 97,	9	77
174	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. <i>Physical Review D</i> , 2011 , 83,	9	77
173	All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data. <i>Physical Review Letters</i> , 2009 , 102, 111102	4	77
172	Einstein@Home search for periodic gravitational waves in LIGO S4 data. <i>Physical Review D</i> , 2009 , 79,	9	77
171	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	9	76
170	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011 , 737, 93	7	75
169	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017 , 34, 104002	3	74
168	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	4	74

167	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. <i>Physical Review D</i> , 2009 , 80,	4.9	73
166	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. <i>Physical Review D</i> , 2009 , 80,	4.9	71
165	Analysis of first LIGO science data for stochastic gravitational waves. <i>Physical Review D</i> , 2004 , 69,	4.9	71
164	Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
163	Search for gravitational-wave bursts in LIGO data from the fourth science run. <i>Classical and Quantum Gravity</i> , 2007 , 24, 5343-5369	3.3	70
162	Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. <i>Physical Review D</i> , 2005 , 72,	4.9	70
161	Model comparison from LIGON irgo data on GW1708178 binary components and consequences for the merger remnant. <i>Classical and Quantum Gravity</i> , 2020 , 37, 045006	3.3	69
160	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 541, A155	5.1	69
159	First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform. <i>Physical Review D</i> , 2005 , 72,	4.9	69
158	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
157	Search for gravitational waves from binary black hole inspirals in LIGO data. <i>Physical Review D</i> , 2006 , 73,	4.9	68
156	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. <i>Physical Review D</i> , 2005 , 72,	4.9	66
155	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
154	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
153	Search for gravitational-wave bursts from soft gamma repeaters. <i>Physical Review Letters</i> , 2008 , 101, 211102	7.4	64
152	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015\(\textit{0017 LIGO Data.}\) Astrophysical Journal, 2019 , 879, 10	4.7	63
151	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO® first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
150	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61

(2016-2017)

149	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. <i>Physical Review D</i> , 2017 , 95,	4.9	60	
148	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60	
147	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60	
146	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60	
145	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59	
144	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59	
143	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. <i>Physical Review D</i> , 2019 , 99,	4.9	58	
142	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58	
141	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57	
140	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28	8	57	
139	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. <i>Physical Review D</i> , 2008 , 77,	4.9	55	
138	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54	
137	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54	
136	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54	
135	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54	
134	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. <i>Astrophysical Journal</i> , 2010 , 715, 1438-1	452	54	
133	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. <i>Astrophysical Journal</i> , 2012 , 755, 2	4.7	53	
132	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14	8	52	

131	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014 , 211, 7	8	51
130	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. <i>Physical Review D</i> , 2008 , 78,	4.9	51
129	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50
128	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
127	A cryogenic silicon interferometer for gravitational-wave detection. <i>Classical and Quantum Gravity</i> , 2020 , 37, 165003	3.3	50
126	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49
125	Upper limits on gravitational wave bursts in LIGOE second science run. <i>Physical Review D</i> , 2005 , 72,	4.9	49
124	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
123	Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806\(\mathbb{Q}\)0 hyperflare of 27 December 2004 using LIGO. <i>Physical Review D</i> , 2007 , 76,	4.9	48
122	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
121	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. <i>Astrophysical Journal Letters</i> , 2011 , 734, L35	7.9	47
120	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46
119	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
118	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
117	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45
116	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. <i>Physical Review D</i> , 2005 , 72,	4.9	44
115	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
114	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	43

(2018-2009)

113	First LIGO search for gravitational wave bursts from cosmic (super)strings. <i>Physical Review D</i> , 2009 , 80,	4.9	43	
112	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42	
111	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600¶000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40	
110	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. <i>Physical Review D</i> , 2011 , 83,	4.9	40	
109	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009 , 701, L68-L74	4.7	40	
108	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39	
107	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39	
106	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39	
105	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38	
104	SUPPLEMENT: IIOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914II(2016, ApJL, 826, L13). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 225, 8	8	38	
103	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. <i>Physical Review D</i> , 2006 , 73,	4.9	38	
102	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37	
101	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36	
100	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. <i>Physical Review D</i> , 2009 , 80,	4.9	36	
99	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. <i>Physical Review D</i> , 2020 , 101,	4.9	36	
98	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35	
97	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34	
96	Prospects for Detecting Gravitational Waves at 5[Hz with Ground-Based Detectors. <i>Physical Review Letters</i> , 2018 , 120, 141102	7.4	33	

95	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. <i>Physical Review D</i> , 2007 , 76,	4.9	33
94	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo third observing run. <i>Physical Review D</i> , 2021 , 104,	4.9	33
93	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32
92	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32
91	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
90	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. <i>Astrophysical Journal Letters</i> , 2020 , 902, L21	7.9	32
89	Directional limits on persistent gravitational waves using data from Advanced LIGOE first two observing runs. <i>Physical Review D</i> , 2019 , 100,	4.9	31
88	Search for high frequency gravitational-wave bursts in the first calendar year of LIGOE fifth science run. <i>Physical Review D</i> , 2009 , 80,	4.9	31
87	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. <i>Physical Review D</i> , 2019 , 100,	4.9	31
86	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
85	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
84	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
83	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 008-008	6.4	29
82	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
81	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
80	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
79	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
78	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26

(2012-2014)

77	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005\(\textstyle 0.05 \textstyle 0.000 \) (2014, 89,	4.9	26	
76	Design of a speed meter interferometer proof-of-principle experiment. <i>Classical and Quantum Gravity</i> , 2014 , 31, 215009	3.3	26	
75	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25	
74	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25	
73	Astrophysically triggered searches for gravitational waves: status and prospects. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114051	3.3	24	
72	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. <i>Astrophysical Journal</i> , 2019 , 870, 134	4.7	23	
71	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22	
70	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22	
69	Experimental test of higher-order Laguerre Lauss modes in the 10 m Glasgow prototype interferometer. Classical and Quantum Gravity, 2013, 30, 035004	3.3	21	
68	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21	
67	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21	
66	The status of GEO 600. Classical and Quantum Gravity, 2005, 22, S193-S198	3.3	20	
65	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. <i>Classical and Quantum Gravity</i> , 2008 , 25, 245008	3.3	19	
64	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18	
63	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. <i>Physical Review Letters</i> , 2017 , 118, 151102	7.4	18	
62	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17	
61	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17	
60	Multicolor cavity metrology. <i>Journal of the Optical Society of America A: Optics and Image Science,</i> and Vision, 2012 , 29, 2092-103	1.8	16	

59	Silica research in Glasgow. Classical and Quantum Gravity, 2002, 19, 1655-1662	3.3	16
58	A joint search for gravitational wave bursts with AURIGA and LIGO. <i>Classical and Quantum Gravity</i> , 2008 , 25, 095004	3.3	15
57	Commissioning, characterization and operation of the dual-recycled GEO 600. <i>Classical and Quantum Gravity</i> , 2004 , 21, S1737-S1745	3.3	15
56	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. <i>Physical Review D</i> , 2021 , 104,	4.9	15
55	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. <i>Physical Review D</i> , 2021 , 103,	4.9	15
54	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
53	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
52	A report on the status of the GEO 600 gravitational wave detector. <i>Classical and Quantum Gravity</i> , 2003 , 20, S581-S591	3.3	14
51	Local-oscillator noise coupling in balanced homodyne readout for advanced gravitational wave detectors. <i>Physical Review D</i> , 2015 , 92,	4.9	13
50	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. <i>Astrophysical Journal Letters</i> , 2021 , 913, L27	7.9	13
49	Publisher Note: Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy [Phys. Rev. D 93, 112004 (2016)]. <i>Physical Review D</i> , 2018 , 97,	4.9	13
48	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
47	Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity. <i>Optics Express</i> , 2011 , 19, 14955-63	3.3	12
46	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo first three observing runs. <i>Physical Review D</i> , 2021 , 104,	4.9	12
45	Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers. <i>Classical and Quantum Gravity</i> , 2017 , 34, 024001	3.3	11
44	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
43	Laser amplitude stabilization for advanced interferometric gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2005 , 22, 4279-4283	3.3	10
42	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 921, 80	4.7	10

(2018-2017)

41	Quantum correlation measurements in interferometric gravitational-wave detectors. <i>Physical Review A</i> , 2017 , 95,	2.6	9
40	Coupling of lateral grating displacement to the output ports of a diffractive FabryPerot cavity. Journal of Optics, 2009, 11, 085502		9
39	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. <i>Physical Review D</i> , 2022 , 105,	4.9	9
38	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. <i>Astrophysical Journal</i> , 2020 , 893, 100	4.7	9
37	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537日910. <i>Astrophysical Journal</i> , 2021 , 922, 71	4.7	8
36	Experimental demonstration of a suspended diffractively coupled optical cavity. <i>Optics Letters</i> , 2009 , 34, 3184-6	3	7
35	Novel sensing and control schemes for a three-mirror coupled cavity. <i>Classical and Quantum Gravity</i> , 2007 , 24, 3825-3836	3.3	7
34	Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors. <i>Physical Review D</i> , 2017 , 95,	4.9	6
33	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO Virgo Run O3a. <i>Astrophysical Journal</i> , 2021 , 915, 86	4.7	6
32	Performance of the Glasgow 10 m prototype gravitational wave detector operating at 월1064 nm. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2000 , 273, 277-284	2.3	5
31	Effects of transients in LIGO suspensions on searches for gravitational waves. <i>Review of Scientific Instruments</i> , 2017 , 88, 124501	1.7	4
30	Translational, rotational, and vibrational coupling into phase in diffractively coupled optical cavities. <i>Optics Letters</i> , 2011 , 36, 2746-8	3	4
29	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. <i>Classical and Quantum Gravity</i> , 2004 , 21, S671-S676	3.3	4
28	Ultrahigh level of frequency stabilisation of an injection locked Nd:YAG laser with relevance to gravitational wave detection. <i>Optics Communications</i> , 2000 , 186, 177-184	2	4
27	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	4
26	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. <i>Astronomy and Astrophysics</i> ,	5.1	4
25	Demonstration of an optical spring in the 100 g mirror regime. <i>Classical and Quantum Gravity</i> , 2016 , 33, 075007	3.3	4
24	Quantum noise cancellation in asymmetric speed metres with balanced homodyne readout. <i>New Journal of Physics</i> , 2018 , 20, 103040	2.9	4

23	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO Third Observing Run. <i>Astrophysical Journal</i> , 2021 , 923, 14	4.7	4
22	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. <i>Physical Review D</i> , 2022 , 105,	4.9	4
21	Experimental demonstration of coupled optical springs. Classical and Quantum Gravity, 2017, 34, 03502	203.3	3
20	Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	3
19	Optical modulation techniques for length sensing and control of optical cavities. <i>Applied Optics</i> , 2007 , 46, 7739-45	1.7	3
18	Progress and challenges in advanced ground-based gravitational-wave detectors. <i>General Relativity and Gravitation</i> , 2014 , 46, 1	2.3	2
17	Concepts and research for future detectors. <i>General Relativity and Gravitation</i> , 2014 , 46, 1	2.3	2
16	Publisher Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D 82, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2
15	Control sideband generation for dual-recycled laser interferometric gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2006 , 23, 5661-5666	3.3	2
14	Status of the GEO600 gravitational wave detector 2003 ,		2
14	Status of the GEO600 gravitational wave detector 2003 , The status of GEO 600 2004 ,		2
		2.3	
13	The status of GEO 600 2004 , Improved performance of the Glasgow 10 m prototype gravitational wave detector using an injection-locked Nd:YAG laser source. <i>Physics Letters, Section A: General, Atomic and Solid State</i>	2.3	2
13	The status of GEO 600 2004 , Improved performance of the Glasgow 10 m prototype gravitational wave detector using an injection-locked Nd:YAG laser source. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2001 , 287, 62-64 Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced	2.3	2
13 12 11	The status of GEO 600 2004, Improved performance of the Glasgow 10 m prototype gravitational wave detector using an injection-locked Nd:YAG laser source. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2001, 287, 62-64 Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018, 21, 1 Constraints on dark photon dark matter using data from LIGOE and VirgoE third observing run.		2 2
13 12 11	The status of GEO 600 2004, Improved performance of the Glasgow 10 m prototype gravitational wave detector using an injection-locked Nd:YAG laser source. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2001, 287, 62-64 Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018, 21, 1 Constraints on dark photon dark matter using data from LIGOB and VirgoB third observing run. <i>Physical Review D</i> , 2022, 105, All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes	4.9	2 2 2
13 12 11 10 9	The status of GEO 600 2004, Improved performance of the Glasgow 10 m prototype gravitational wave detector using an injection-locked Nd:YAG laser source. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 287, 62-64 Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018, 21, 1 Constraints on dark photon dark matter using data from LIGOB and VirgoB third observing run. Physical Review D, 2022, 105, All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Physical Review D, 2022, 105, Experimental demonstration of a suspended, diffractively coupled FabryPerot cavity. Classical and	4.9	2 2 2 2

LIST OF PUBLICATIONS

4	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGOVirgo Run O3b. <i>Astrophysical Journal</i> , 2022 , 928, 186	4.7	1
3	Upper limit to the transverse to longitudinal motion coupling of a waveguide mirror. <i>Classical and Quantum Gravity</i> , 2015 , 32, 175005	3.3	
2	Techniques in the optimization of length sensing and control systems for a three-mirror coupled cavity. <i>Classical and Quantum Gravity</i> , 2008 , 25, 235003	3.3	
1	Detector characterization in GEO 600. Classical and Quantum Gravity, 2003, 20, S731-S739	3.3	