Tatiana V Glukhareva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4900397/publications.pdf

Version: 2024-02-01

840119 676716 78 690 11 22 citations h-index g-index papers 82 82 82 556 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and Biological Activity of Novel Succinate Dehydrogenase Inhibitor Derivatives as Potent Fungicide Candidates. Journal of Agricultural and Food Chemistry, 2019, 67, 13185-13194.	2.4	56
2	tert-Amino effect: the Meth-Cohn and Reinhoudt reactions (Review). Chemistry of Heterocyclic Compounds, 2013, 49, 357-385.	0.6	50
3	2-Hydroxypropyl derivatives of 1,2,3-thiadiazole and 1,2,3-triazole: Synthesis and antifungal activity. Pure and Applied Chemistry, 2011, 83, 715-722.	0.9	42
4	Recent Developments in the Chemistry of 1,2,3-Thiadiazoles. Advances in Heterocyclic Chemistry, 2018, , 109-172.	0.9	37
5	Rearrangements and Transformations of 1,2,3-Thiadiazoles in Organic Synthesis. (Review). Chemistry of Heterocyclic Compounds, 2003, 39, 679-706.	0.6	31
6	Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Critical Reviews in Food Science and Nutrition, 2022, 62, 5005-5028.	5.4	31
7	Discovery of Methyl (5 <i>Z</i>)-[2-(2,4,5-Trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetates as Antifungal Agents against Potato Diseases. Journal of Agricultural and Food Chemistry, 2018, 66, 6239-6245.	2.4	29
8	Design, synthesis and fungicidal activity of isothiazole–thiazole derivatives. RSC Advances, 2018, 8, 39593-39601.	1.7	23
9	Synthesis, Fungicidal Activity, and Molecular Docking of 2-Acylamino and 2-Thioacylamino Derivatives of $1 < i > H < [i > -benzo[< i > d < [i >] imidazoles as Anti-Tubulin Agents. Journal of Agricultural and Food Chemistry, 2021, 69, 12048-12062.$	2.4	20
10	The tert-Amino Effect in Heterocyclic Chemistry. Synthesis of Spiro Heterocycles. Molecules, 2005, 10, 1101-1108.	1.7	18
11	tert-Amino effect in heterocyclic chemistry. Synthesis of hydrogenated spiro derivatives of quinolines. Russian Chemical Bulletin, 2004, 53, 1240-1247.	0.4	16
12	Discovery of Novel 3,4-Dichloroisothiazole-Containing Coumarins as Fungicidal Leads. Journal of Agricultural and Food Chemistry, 2021, 69, 4253-4262.	2.4	12
13	Rh(I)-Catalyzed Denitrogenative Transformations of 1,2,3-Thiadiazoles: Ligand-Controlled Product Selectivity and the Structure of the Key Organorhodium Intermediate Revealed. ACS Catalysis, 2022, 12, 5574-5584.	5 . 5	12
14	A new ring transformation in the series of 1,2,3-thiadiazoles. Synthesis of 5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazines. Mendeleev Communications, 2000, 10, 19-20.	0.6	11
15	Synthesis of Spiro Derivatives of Pyrrolo[1,2-a]quinoline. Chemistry of Heterocyclic Compounds, 2002, 38, 1426-1427.	0.6	11
16	Phosphorus pentachloride-induced transformation of (1,2,3-thiadiazol-5-yl)hydrazones of acetophenone. Russian Chemical Bulletin, 2011, 60, 981-984.	0.4	11
17	Synthesis of spiro derivatives of $1,2,3$ -triazolo $[5,1$ -b $][1,3,4]$ thiadiazines and biological activity thereof. Chemistry of Heterocyclic Compounds, $2015,51,589$ -592.	0.6	11
18	Design, Synthesis and Biological Evaluation of Isothiazole Based 1,2,4â€√rizaole Derivatives. Chinese Journal of Chemistry, 2018, 36, 731-736.	2.6	11

#	Article	IF	Citations
19	Design, Synthesis, and Evaluation of Fungicidal Activity of Novel Pyrazoleâ€Containing Strobilurin Derivatives â€. Chinese Journal of Chemistry, 2021, 39, 1531-1537.	2.6	11
20	Enhancing astaxanthin yield in Phaffia rhodozyma: current trends and potential of phytohormones. Applied Microbiology and Biotechnology, 2022, 106, 3531-3538.	1.7	11
21	One-step synthesis of a novel heterocyclic system: Spiro[[1,4]thiazino-[4,3-a]quinoline-5,5′-pyrimidine]. Chemistry of Heterocyclic Compounds, 2006, 42, 127-128.	0.6	10
22	Transformation of 1,2,3â€Thiadiazolyl Hydrazones as Method for Preparation of 1,2,3â€Triazolo[5,1â€ <i>b</i>][1,3,4]thiadiazines. Journal of Heterocyclic Chemistry, 2017, 54, 137-146.	1.4	10
23	Synthesis of Spiro[pyrimidine-5,4'-pyrrolo[1,2-a]quinoline]-2,4,6-triones. Chemistry of Heterocyclic Compounds, 2003, 39, 1532-1533.	0.6	9
24	Stereoselective synthesis of spirofused 3-substituted 2,3,4,4a,5,6-hexahydro- 6H-benzo[c]quinolizine using the tert-amino effect. Mendeleev Communications, 2006, 16, 82-83.	0.6	9
25	Synthesis of condensed [1,2,3]triazolo-[5,1-b][1,3,4]thiadiazepine systems. Chemistry of Heterocyclic Compounds, 2013, 49, 350-352.	0.6	9
26	Efficient construction of bioactive <i>trans</i> -5 _A 5 _B 6 _C spirolactones <i>via</i> bicyclo [4.3.0] $\hat{1}$ ±-hydroxy ketones. Organic and Biomolecular Chemistry, 2018, 16, 1163-1166.	1.5	9
27	A new ring transformation of 1,2,3-thiadiazoles into furan-2-carbothioamides. Mendeleev Communications, 2006, 16 , 76 - 77 .	0.6	8
28	Diastereoselective synthesis of spiro derivatives of 3-substituted 2,3,4,4a,5,6-hexahydro-1H-benzo[c]quinolizines. Russian Journal of Organic Chemistry, 2009, 45, 743-754.	0.3	8
29	Regioselectivity of the Synthesis of 2-Pyrazolinylthiazoles by reacting 2-Hydrazinothiazoles with Unsymmetrical \hat{I}^2 -Diketones. Journal of Chemical Research, 2001, 2001, 12-13.	0.6	7
30	Synthesis and Cytotoxic Activity of 1,2,3-Triazole Derivatives in Glioma Cell Cultures. Pharmaceutical Chemistry Journal, 2015, 49, 296-300.	0.3	7
31	Reactions of 5-dialkylamino-1,2,3-thiadiazole-4-carbaldehydes with amines as a method for the synthesis of 1,2,3-triazole-4-carbothioamides. Russian Chemical Bulletin, 2004, 53, 1311-1317.	0.4	6
32	Stereoselective synthesis of new spiro-fused heterocyclic systems, 2,3,4,4a,5.6-hexahydro-6H-spiro[benzo[c]quinolizine-5,4′-pyrazol]-5′-ones. Chemistry of Heterocyclic Compounds, 2007, 43, 76-81.	0.6	6
33	Synthesis of 4-thioacetyl-1,2,3-thiadiazoles. Reversible rearrangement of N-Substituted 5-methyl-1,2,3-thiadiazole-4-carbothioamides. Russian Journal of Organic Chemistry, 2012, 48, 1333-1336.	0.3	6
34	1,2,3-Thiadiazolyl Isocyanates in the Synthesis of Biologically Active Compounds. Study of the Cytotoxic Activity of N-(4-methyl-1,2,3-thiadi-azolyl-5-yl)-N'-(4-methylphenyl)Urea*. Chemistry of Heterocyclic Compounds, 2014, 50, 1039-1046.	0.6	6
35	Biotechnological production of non-traditional beer. AIP Conference Proceedings, 2017, , .	0.3	6
36	Synthesis, characterization, DFT calculations, and biological activity of copper(II) complexes with 1,1,1-trifluoro-4-(2-methoxyphenyl)butan-2,4-dione. Journal of Molecular Structure, 2019, 1176, 515-528.	1.8	6

#	Article	IF	Citations
37	Synthesis of spirocyclic 4,5,5a,6,7,8-hexahydro-1H-pyrazolo[3,4-e]indolizine derivatives. Mendeleev Communications, 2005, 15, 119-120.	0.6	5
38	Reversible Rearrangement of 1,2,3-Triazole-4-carbothioamide to 1,2,3-Thiadiazole-4-carbimines. Chemistry of Heterocyclic Compounds, 2005, 41, 542-543.	0.6	5
39	Stereoselective synthesis of spiro derivatives of 2,4-dimethyl-2,3,4,4a,5,6-hexahydro-6H-benzo[c]quinolizine. Russian Chemical Bulletin, 2005, 54, 1537-1538.	0.4	5
40	3-(4-Thiocarbamoyl-1,2,3-triazol-1-yl)benzo-15-crown-5: synthesis and properties. Russian Chemical Bulletin, 2010, 59, 867-869.	0.4	5
41	Regioselective reaction of ortho-piperidinobenzaldehydes with pyrazolone. Russian Chemical Bulletin, 2011, 60, 961-964.	0.4	5
42	Synthesis of 1,2,3-Triazolo[1,5-а]Pyridin-8-lum-3-Olates. Chemistry of Heterocyclic Compounds, 2015, 51, 199-202.	0.6	5
43	Production of astaxanthin rich feed supplement for animals from Phaffia rhodozyma yeast at low cost. AIP Conference Proceedings, 2017, , .	0.3	5
44	Synthesis and fungicidal activity of monocyclic and fused 1,2,3-triazolium-5-olates. Chemistry of Heterocyclic Compounds, 2018, 54, 956-963.	0.6	5
45	Regioselective synthesis of heterocyclic $\langle i \rangle N \langle j \rangle$ -sulfonyl amidines from heteroaromatic thioamides and sulfonyl azides. Beilstein Journal of Organic Chemistry, 2020, 16, 2937-2947.	1.3	5
46	Astaxanthin from bacteria as a feed supplement for animals., 2021,, 647-667.		5
47	Synthesis of 1,2, 3â€Thiadiazole ―and Isothiazoleâ€Based Phenyl Substituted Pyridine Containing Carboxamides as Potent Plant Elicitors. Pest Management Science, 2021, , .	1.7	5
48	Reaction of 5-Hydrazono-1,2,3-thiadiazoles with Toluene and Xylene in the Presence of PCl5. Chemistry of Heterocyclic Compounds, 2003, 39, 126-127.	0.6	4
49	Dimroth rearrangement in synthesis of a heteroditopic receptor. Chemistry of Heterocyclic Compounds, 2006, 42, 121-122.	0.6	4
50	Synthesis of 5,6-dihydro[1,2,3]thiadiazolo[5,4-e]-[1,4]oxazepin-8(4)-one. Chemistry of Heterocyclic Compounds, 2008, 44, 233-234.	0.6	4
51	Microwave-Assisted Synthesis of Fused 3-Thiocarbamoylquinolines by Reinhoudt Reaction and their Modification by Hantzsch Reaction. Chemistry of Heterocyclic Compounds, 2015, 50, 1450-1456.	0.6	4
52	Synthesis and properties of 5-hydroxy-1-tolyl(benzyl)-1,2,3-triazoles. Chemistry of Heterocyclic Compounds, 2016, 52, 716-720.	0.6	4
53	Synthesis of 4-(4-oxo-1,3-thiazolidin-2-ylidene)-pyrrolidine-2,3,5-triones. Chemistry of Heterocyclic Compounds, 2017, 53, 622-625.	0.6	4
54	Design, synthesis and antifungal activity of (E)-3-acyl-5-(methoxyimino)-1,5-dihydrobenzo[e][1,2]oxazepin-4(3H)-one analogues. Molecular Diversity, 2021, 25, 159-169.	2.1	4

#	Article	IF	Citations
55	A tandem of the Cornforth rearrangements of $4-(1,2,3-triazol-1-yl)$ iminomethyl-1,2,3-thiadiazole. Russian Chemical Bulletin, 2001, 50, 268-271.	0.4	3
56	Synthesis of fused 3-cyano- and 3-carbamoyl-1,2,3,4-tetrahydroquinolines. Russian Chemical Bulletin, 2014, 63, 1580-1583.	0.4	3
57	Synthesis of (1,2,3-thiadiazolyl)imidazolidine-2,4-diones by microwave irradiation and characterization of their biological activity. Chemistry of Heterocyclic Compounds, 2016, 52, 910-917.	0.6	3
58	Synthesis and evaluation of the influence of 5-sulfanyl-1,2,3-triazol-1-ylaminocarboxylic acid derivatives on kinetics of ascorbic acid oxidation. Russian Chemical Bulletin, 2016, 65, 203-208.	0.4	3
59	Synthesis of 5-(pyrazol-1-yl)-1,2,3-thiadiazoles. Chemistry of Heterocyclic Compounds, 2017, 53, 236-238.	0.6	3
60	Application of fermentation for isoflavone extraction from soy molasses. AIP Conference Proceedings, 2017, , .	0.3	3
61	Synthesis of 5-(5-amino-1H-pyrazol-1-yl)-1,2,3-thiadiazole-4-carboxylic acid ethyl esters and their cyclization into pyrazolo[1,5-a][1,2,3]thiadiazolo[4,5-e]pyrimidin-4(5H)-ones. Chemistry of Heterocyclic Compounds, 2018, 54, 1079-1082.	0.6	3
62	Synthesis and properties of bi- and tricyclic 1,3-thiazoline/thiazolidine assemblies linked by an exocyclic θ_i = θ_i double bond. Chemistry of Heterocyclic Compounds, 2019, 55, 1013-1034.	0.6	3
63	Synthesis and Kinetics of the Cyclization of 3-(Dialkylaminophenyl)-2-(phenylcarbonyl)-prop-2-enenitriles. Chemistry of Heterocyclic Compounds, 2013, 49, 736-745.	0.6	2
64	Synthesis of New 4â€Vinylâ€1,2,3â€Thiadiazoles. ChemistrySelect, 2021, 6, 10527-10531.	0.7	2
65	Hetaryl 1,2,3-Thiadiazolyl Sulfides. Chemistry of Heterocyclic Compounds, 2001, 37, 1270-1278.	0.6	1
66	Chlorination of Calix[4]arene Derivatives. Synthetic Communications, 2015, 45, 1592-1597.	1.1	1
67	The evaluation of influence of synthesized compounds belonging to thiadiazolines family on the growth and biochemical composition of callus culture of Calluna Vulgaris (L.) hull. AIP Conference Proceedings, 2019, , .	0.3	1
68	Synthesis of Spirocyclic 4,5,5a,6,7,8-Hexahydro-1H-pyrazolo[3,4-e]indolizine Derivatives ChemInform, 2005, 36, no.	0.1	0
69	Synthesis and Structure of 1- $(1,2,3$ -Thiadiazolylcarbonyl)-4- $(1,2,3$ -thiadiazolyl)semicarbazide Derivatives. Russian Journal of General Chemistry, 2018, 88, 2209-2212.	0.3	0
70	The synthesis of new 5-arylidene-4-oxothiazolidin-2-ylideneethanethioamides. AIP Conference Proceedings, 2019, , .	0.3	0
71	Reaction of sodium 4-acetyl-1-phenyl-1H-1,2,3-triazol-5-olate with 1,2,3-thiadiazole-4-carboxylic acid hydrazide. AIP Conference Proceedings, 2019, , .	0.3	0
72	1,2,3-selenodiazolyl ureas as antiviral compounds for plant protection. AIP Conference Proceedings, 2019, , .	0.3	0

#	Article	IF	CITATIONS
73	Comparative in vitro study of the growth regulative activity of potato microplants under the influence of derivatives 1,2,3-triazolo-1,3,4-thiadiazines. AIP Conference Proceedings, 2019, , .	0.3	O
74	Assessment of the Wound-Healing Action of Spiroconjugated 1,2,3-Triazolo[5,1-b]-1,3,4-Thiadiazine in a Linear Skin Wound Model. Pharmaceutical Chemistry Journal, 2019, 53, 642-645.	0.3	0
75	The different modes of chiral [1,2,3]triazolo[5,1- <i>b</i>][1,3,4]thiadiazines: crystal packing, conformation investigation and cellular activity. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 795-809.	0.2	0
76	Synthesis of First Representatives of Isatin 1,2,3-Thiadiazolylcarbonylhydrazones. Russian Journal of General Chemistry, 2020, 90, 917-920.	0.3	0
77	Crystal structure of 1-methoxy-5-methyl-N-phenyl-1,2,3-triazole-4-carboxamide. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0798-0798.	0.2	O
78	Effect of plant growth regulators on seed germination of Brassica napus L. of the «Heros» linear variety. AIP Conference Proceedings, 2020, , .	0.3	0