
Konstantinos Dialynas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4900310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The in-situ exploration of Jupiter's radiation belts. Experimental Astronomy, 2022, 54, 745-789.	3.7	11
2	A source of very energetic oxygen located in Jupiter's inner radiation belts. Science Advances, 2022, 8, eabm4234.	10.3	11
3	The Structure of the Global Heliosphere as Seen by In-Situ Ions from the Voyagers and Remotely Sensed ENAs from Cassini. Space Science Reviews, 2022, 218, 1.	8.1	21
4	On the Energization of Pickup Ions Downstream of the Heliospheric Termination Shock by Comparing 0.52–55 keV Observed Energetic Neutral Atom Spectra to Ones Inferred from Proton Hybrid Simulations. Astrophysical Journal Letters, 2022, 931, L21.	8.3	11
5	The Structure of the Large-Scale Heliosphere as Seen by Current Models. Space Science Reviews, 2022, 218, .	8.1	23
6	Energetic Neutral Atom Fluxes from the Heliosheath: Constraints from in situ Measurements and Models. Astrophysical Journal Letters, 2021, 915, L26.	8.3	9
7	lons Measured by Voyager 1 Outside the Heliopause to ~28 au and Implications Thereof. Astrophysical Journal, 2021, 917, 42.	4.5	15
8	Signature of a Heliotail Organized by the Solar Magnetic Field and the Role of Nonideal Processes in Modeled IBEX ENA Maps: A Comparison of the BU and Moscow MHD Models. Astrophysical Journal, 2021, 921, 164.	4.5	14
9	A Turbulent Heliosheath Driven by the Rayleigh–Taylor Instability. Astrophysical Journal, 2021, 922, 181.	4.5	21
10	The Development of a Split-tail Heliosphere and the Role of Non-ideal Processes: A Comparison of the BU and Moscow Models. Astrophysical Journal, 2021, 923, 179.	4.5	14
11	Convection in the Magnetosphere of Saturn During the Cassini Mission Derived From MIMI INCA and CHEMS Measurements. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027534.	2.4	11
12	A Long‣asting Auroral Spiral Rotating Around Saturn's Pole. Geophysical Research Letters, 2020, 47, e2020GL088810.	4.0	4
13	Long- and Short-term Variability of Galactic Cosmic-Ray Radial Intensity Gradients between 1 and 9.5 au: Observations by Cassini, BESS, BESS-Polar, PAMELA, and AMS-02. Astrophysical Journal, 2020, 904, 165.	4.5	20
14	Combined â^1⁄410 eV to â^1⁄4344 MeV Particle Spectra and Pressures in the Heliosheath along the Voyager 2 Trajectory. Astrophysical Journal Letters, 2020, 905, L24.	8.3	24
15	Heliospheric Maps from Cassini INCA Early in the Cruise to Saturn. Astrophysical Journal Letters, 2020, 902, L45.	8.3	7
16	Auroral Beads at Saturn and the Driving Mechanism: Cassini Proximal Orbits. Astrophysical Journal Letters, 2019, 885, L16.	8.3	10
17	Energetic charged particle measurements from Voyager 2 at the heliopause and beyond. Nature Astronomy, 2019, 3, 997-1006.	10.1	59
18	Plasma Pressures in the Heliosheath From Cassini ENA and Voyager 2 Measurements: Validation by the Voyager 2 Heliopause Crossing. Geophysical Research Letters, 2019, 46, 7911-7919.	4.0	29

#	Article	IF	CITATIONS
19	Jovian Cosmic-Ray Protons in the Heliosphere: Constraints by Cassini Observations. Astrophysical Journal, 2019, 871, 223.	4.5	8
20	Sources, Sinks, and Transport of Energetic Electrons Near Saturn's Main Rings. Geophysical Research Letters, 2019, 46, 3590-3598.	4.0	13
21	Drift-resonant, relativistic electron acceleration at the outer planets: Insights from the response of Saturn's radiation belts to magnetospheric storms. Icarus, 2018, 305, 160-173.	2.5	26
22	Statistical Study of the Energetic Proton Environment at Titan's Orbit From the Cassini Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 4820-4834.	2.4	8
23	Heliospheric Conditions at Saturn During Cassini's Ringâ€Grazing and Proximal Orbits. Geophysical Research Letters, 2018, 45, 10812-10818.	4.0	14
24	Cassini/MIMI Observations on the Dungey Cycle Reconnection and Kelvinâ€Helmholtz Instability in Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 7271-7275.	2.4	3
25	Energetic Ion Moments and Polytropic Index in Saturn's Magnetosphere using Cassini/MIMI Measurements: A Simple Model Based on <i>κ</i> â€Distribution Functions. Journal of Geophysical Research: Space Physics, 2018, 123, 8066-8086.	2.4	34
26	A radiation belt of energetic protons located between Saturn and its rings. Science, 2018, 362, .	12.6	27
27	Recurrent Magnetic Dipolarization at Saturn: Revealed by Cassini. Journal of Geophysical Research: Space Physics, 2018, 123, 8502-8517.	2.4	14
28	The bubble-like shape of the heliosphere observed by Voyager and Cassini. Nature Astronomy, 2017, 1, .	10.1	74
29	The Kappa-Shaped Particle Spectra in Planetary Magnetospheres. , 2017, , 481-522.		6
30	Response times of Cassini/INCA > 5.2 keV ENAs and Voyager ions in the heliosheath over the solar cycle. Journal of Physics: Conference Series, 2017, 900, 012005.	0.4	11
31	Energetic Neutral Atom (ENA) intensity gradients in the heliotail during year 2003, using Cassini/INCA measurements. Journal of Physics: Conference Series, 2015, 577, 012007.	0.4	5
32	The extended Saturnian neutral cloud as revealed by global ENA simulations using Cassini/MIMI measurements. Journal of Geophysical Research: Space Physics, 2013, 118, 3027-3041.	2.4	30
33	A THREE-COORDINATE SYSTEM (ECLIPTIC, GALACTIC, ISMF) SPECTRAL ANALYSIS OF HELIOSPHERIC ENA EMISSIONS USING <i>CASSINI</i> /INCA MEASUREMENTS. Astrophysical Journal, 2013, 778, 40.	4.5	34
34	Cassini ENA images of the heliosheath and Voyager "ground truth― Thickness of the heliosheath. AIP Conference Proceedings, 2012, , .	0.4	11
35	Energetic charged particle weathering of Saturn's inner satellites. Planetary and Space Science, 2012, 61, 60-65.	1.7	31
36	The distribution of Titan's high-altitude (out to â^¼50,000km) exosphere from energetic neutral atom (ENA) measurements by Cassini/INCA. Planetary and Space Science, 2012, 60, 107-114.	1.7	28

#	Article	IF	CITATIONS
37	Saturn's periodic magnetic field perturbations caused by a rotating partial ring current. Geophysical Research Letters, 2010, 37, .	4.0	37
38	Analysis of a sequence of energetic ion and magnetic field events upstream from the Saturnian magnetosphere. Planetary and Space Science, 2009, 57, 1785-1794.	1.7	11
39	Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. Journal of Geophysical Research, 2009, 114, .	3.3	111
40	Discovery of a transient radiation belt at Saturn. Geophysical Research Letters, 2008, 35, .	4.0	54
41	Characteristic signatures of energetic ions upstream from the Kronian magnetosphere as revealed by Cassini/MIMI. Proceedings of the International Astronomical Union, 2008, 4, 517-522.	0.0	0
42	Electron impact ionization in the Martian ionosphere. AIP Conference Proceedings, 2007, , .	0.4	0
43	Mars: Determination of the most appropriate electron energy for the bow shock identification, using MGS data. AIP Conference Proceedings, 2006, , .	0.4	0
44	Magnetospheric Electron Flows In The Martian Ionosphere. Detection And Implications. AIP Conference Proceedings, 2006, , .	0.4	1