
Arianna B Lovati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899895/publications.pdf Version: 2024-02-01

Δριανικά ΒΙουάτι

#	Article	IF	CITATIONS
1	Translating Stem Cell-Based Regenerative Approaches into Clinical Therapies for Musculoskeletal Tissue Repair. Stem Cells International, 2021, 2021, 1-2.	2.5	0
2	Comparison of Decellularization Protocols to Generate Peripheral Nerve Grafts: A Study on Rat Sciatic Nerves. International Journal of Molecular Sciences, 2021, 22, 2389.	4.1	15
3	Independent, Controllable Stretch-Perfusion Bioreactor Chambers to Functionalize Cell-Seeded Decellularized Tendons. Annals of Biomedical Engineering, 2020, 48, 1112-1126.	2.5	20
4	Peptide-Enriched Silk Fibroin Sponge and Trabecular Titanium Composites to Enhance Bone Ingrowth of Prosthetic Implants in an Ovine Model of Bone Gaps. Frontiers in Bioengineering and Biotechnology, 2020, 8, 563203.	4.1	15
5	Pulsed electromagnetic fields improve the healing process of Achilles tendinopathy. Bone and Joint Research, 2020, 9, 613-622.	3.6	5
6	Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model. Stem Cells International, 2019, 2019, 1-14.	2.5	15
7	Proteomic Analysis Reveals a Biofilm-Like Behavior of Planktonic Aggregates of Staphylococcus epidermidis Grown Under Environmental Pressure/Stress. Frontiers in Microbiology, 2019, 10, 1909.	3.5	14
8	A Precautionary Approach to Guide the Use of Transition Metal-Based Nanotechnology to Prevent Orthopedic Infections. Materials, 2019, 12, 314.	2.9	12
9	Bone Marrow-Derived Cell Therapies to Heal Long-Bone Nonunions: A Systematic Review and Meta-Analysis—Which Is the Best Available Treatment?. Stem Cells International, 2019, 2019, 1-12.	2.5	19
10	Animal models of orthopaedic infections. A review of rabbit models used to induce long bone bacterial infections. Journal of Medical Microbiology, 2019, 68, 506-537.	1.8	27
11	Nerve Repair Using Decellularized Nerve Grafts in Rat Models. A Review of the Literature. Frontiers in Cellular Neuroscience, 2018, 12, 427.	3.7	50
12	Vitamin E Phosphate Coating Stimulates Bone Deposition in Implant-related Infections in a Rat Model. Clinical Orthopaedics and Related Research, 2018, 476, 1324-1338.	1.5	25
13	A case report of multi-compartmental lipoma of the hand. Case Reports in Plastic Surgery & Hand Surgery, 2018, 5, 35-38.	0.3	4
14	A review on animal models and treatments for the reconstruction of Achilles and flexor tendons. Journal of Materials Science: Materials in Medicine, 2017, 28, 45.	3.6	35
15	Terminal sterilization of equine-derived decellularized tendons for clinical use. Materials Science and Engineering C, 2017, 75, 43-49.	7.3	10
16	Different combinations of growth factors for the tenogenic differentiation of bone marrow mesenchymal stem cells in monolayer culture and in fibrin-based three-dimensional constructs. Differentiation, 2017, 95, 44-53.	1.9	34
17	Draft Genome Sequence of Staphylococcus epidermidis Clinical Strain GOI1153754-03-14 Isolated from an Infected Knee Prosthesis. Genome Announcements, 2017, 5, .	0.8	5
18	Tissue engineering approaches to develop decellularized tendon matrices functionalized with progenitor cells cultured under undifferentiated and tenogenic conditions. AIMS Bioengineering, 2017, 4, 431-445.	1.1	2

Arianna B Lovati

#	Article	IF	CITATIONS
19	Systemic and Local Administration of Antimicrobial and Cell Therapies to Prevent Methicillin-Resistant <i>Staphylococcus epidermidis</i> -Induced Femoral Nonunions in a Rat Model. Mediators of Inflammation, 2016, 2016, 1-12.	3.0	10
20	Decellularized and Engineered Tendons as Biological Substitutes: A Critical Review. Stem Cells International, 2016, 2016, 1-24.	2.5	64
21	Dose-Related and Time-Dependent Development of Collagenase-Induced Tendinopathy in Rats. PLoS ONE, 2016, 11, e0161590.	2.5	24
22	In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model. Calcified Tissue International, 2016, 99, 209-223.	3.1	36
23	Animal Models of Implant-Related Low-Grade Infections. A Twenty-Year Review. Advances in Experimental Medicine and Biology, 2016, 971, 29-50.	1.6	35
24	Chondrogenic capability of osteoarthritic chondrocytes from the trapeziometacarpal and hip joints. Cell and Tissue Banking, 2016, 17, 171-177.	1.1	2
25	Modeling Staphylococcus epidermidis-Induced Non-Unions: Subclinical and Clinical Evidence in Rats. PLoS ONE, 2016, 11, e0147447.	2.5	42
26	Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges. PLoS ONE, 2016, 11, e0161479.	2.5	14
27	Osteogenic Differentiation of Human and Ovine Bone Marrow Stromal Cells in response to β-Glycerophosphate and Monosodium Phosphate. Cellular Reprogramming, 2015, 17, 235-242.	0.9	13
28	Fabrication of multiâ€well chips for spheroid cultures and implantable constructs through rapid prototyping techniques. Biotechnology and Bioengineering, 2015, 112, 1457-1471.	3.3	17
29	A comparative study of diagnostic and imaging techniques for osteoarthritis of the trapezium. Rheumatology, 2015, 54, 96-103.	1.9	5
30	<i>In Vitro</i> Characterization and <i>In Vivo</i> Behavior of Human Nucleus Pulposus and Annulus Fibrosus Cells in Clinical-Grade Fibrin and Collagen-Enriched Fibrin Gels. Tissue Engineering - Part A, 2015, 21, 793-802.	3.1	20
31	<i>In vivo</i> evaluation of bone deposition in macroporous titanium implants loaded with mesenchymal stem cells and strontiumâ€enriched hydrogel. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 448-456.	3.4	15
32	Soft-Focused Extracorporeal Shock Waves Increase the Expression of Tendon-Specific Markers and the Release of Anti-inflammatory Cytokines in an Adherent Culture Model of Primary Human Tendon Cells. Ultrasound in Medicine and Biology, 2014, 40, 1204-1215.	1.5	41
33	Does PGE1 Vasodilator Prevent Orthopaedic Implant-Related Infection in Diabetes? Preliminary Results in a Mouse Model. PLoS ONE, 2014, 9, e94758.	2.5	7
34	Diabetic Mouse Model of Orthopaedic Implant-Related Staphylococcus Aureus Infection. PLoS ONE, 2013, 8, e67628.	2.5	35
35	Tenogenic Differentiation of Equine Mesenchymal Progenitor Cells under Indirect Co-Culture. International Journal of Artificial Organs, 2012, 35, 996-1005.	1.4	22
36	Tenogenic differentiation of equine mesenchymal progenitor cells under indirect co-culture. International Journal of Artificial Organs, 2012, 35, 996-1005.	1.4	21

#	Article	IF	CITATIONS
37	Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Veterinary Research Communications, 2011, 35, 103-121.	1.6	73