List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899758/publications.pdf Version: 2024-02-01



M M SILVA

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Solar spectral management with electrochromic devices including PMMA films doped with biluminescent ionosilicas. Journal of Sol-Gel Science and Technology, 2022, 101, 58-70.                                                | 1.1 | 4         |
| 2  | Solid Polymer Electrolytes Based on Gellan Gum and Ionic Liquid for Sustainable Electrochromic Devices. ACS Applied Materials & Interfaces, 2022, 14, 15494-15503.                                                           | 4.0 | 13        |
| 3  | Chitosan-based electrolytes containing carbon nanotube-titanium dioxide for energy conversion devices applications. Iranian Polymer Journal (English Edition), 2022, 31, 1197-1208.                                          | 1.3 | 3         |
| 4  | Optimized Printed Cathode Electrodes for High Performance Batteries. Energy Technology, 2021, 9, .                                                                                                                           | 1.8 | 15        |
| 5  | Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended<br>with different ionic liquids for lithium ion batteries. Journal of Colloid and Interface Science, 2021,<br>582, 376-386. | 5.0 | 63        |
| 6  | Improved electrochemical performance of LiMn1.5M0.5O4 (M=Ni, Co, Cu) based cathodes for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 853, 157208.                                                           | 2.8 | 23        |
| 7  | Advances of electrochromic and electro-rheological materials. , 2021, , 283-315.                                                                                                                                             |     | 0         |
| 8  | Nanocomposite Polymer Electrolytes of Sodium Alginate and Montmorillonite Clay. Molecules, 2021, 26, 2139.                                                                                                                   | 1.7 | 3         |
| 9  | Gellanâ€Gum and LiTFSIâ€Based Solid Polymer Electrolytes for Electrochromic Devices. ChemistrySelect,<br>2021, 6, 5110-5119.                                                                                                 | 0.7 | 8         |
| 10 | PtOEP–PDMS-Based Optical Oxygen Sensor. Sensors, 2021, 21, 5645.                                                                                                                                                             | 2.1 | 5         |
| 11 | Directâ€Inkâ€Writing of Electroactive Polymers for Sensing and Energy Storage Applications.<br>Macromolecular Materials and Engineering, 2021, 306, 2100372.                                                                 | 1.7 | 12        |
| 12 | Patterned separator membranes with pillar surface microstructures for improved battery performance. Journal of Colloid and Interface Science, 2021, 596, 158-172.                                                            | 5.0 | 4         |
| 13 | Fundamentals and Advances of Electrochromic Systems: A Review. Advanced Engineering Materials, 2021, 23, .                                                                                                                   | 1.6 | 13        |
| 14 | Increase of Calcium in â€~Rocha' Pear (Pyrus communis L.) for Development of Functional Foods. Biology<br>and Life Sciences Forum, 2021, 4, 6.                                                                               | 0.6 | 2         |
| 15 | Monitoring a Calcium Biofortification Workflow in an Orchard of Pyrus communis var. Rocha<br>Applying Precision Agriculture Technology. Biology and Life Sciences Forum, 2021, 3, 3.                                         | 0.6 | 1         |
| 16 | Proton conducting electrolytes composed of chondroitin sulfate polysaccharide and citric acid.<br>European Polymer Journal, 2020, 124, 109453.                                                                               | 2.6 | 7         |
| 17 | Biopolymer Electrolyte Membranes (BioPEMs) for Sustainable Primary Redox Batteries. Advanced<br>Sustainable Systems, 2020, 4, 1900110.                                                                                       | 2.7 | 5         |
| 18 | Physicochemical stability of contact lenses materials for biomedical applications. Journal of Optometry, 2020, 13, 120-127.                                                                                                  | 0.7 | 4         |

| #  | Article                                                                                                                                                                                                    | IF               | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 19 | Metal–Organic Framework Based PVDF Separators for High Rate Cycling Lithium-Ion Batteries. ACS<br>Applied Energy Materials, 2020, 3, 11907-11919.                                                          | 2.5              | 51                 |
| 20 | Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer. Materials Today<br>Energy, 2020, 18, 100494.                                                                              | 2.5              | 18                 |
| 21 | Plasma-treated Bombyx mori cocoon separators for high-performance and sustainable lithium-ion<br>batteries. Materials Today Sustainability, 2020, 9, 100041.                                               | 1.9              | 9                  |
| 22 | Highly Conducting Bombyx mori Silk Fibroin-Based Electrolytes Incorporating Glycerol, Dimethyl Sulfoxide and [Bmim]PF <sub>6</sub> . Journal of the Electrochemical Society, 2020, 167, 070551.            | 1.3              | 10                 |
| 23 | Electrochromic Device Composed of a Di-Urethanesil Electrolyte Incorporating Lithium Triflate and<br>1-Butyl-3-Methylimidazolium Chloride. Frontiers in Materials, 2020, 7, .                              | 1.2              | 8                  |
| 24 | Chitosan polymer electrolytes doped with a dysprosium ionic liquid. Journal of Polymer Research, 2020, 27, 1.                                                                                              | 1.2              | 10                 |
| 25 | Improved electrochemical properties of MgMn2O4 cathode materials by Sr doping for Mg ion cells.<br>Ionics, 2020, 26, 3947-3958.                                                                            | 1.2              | 14                 |
| 26 | Ionic liquid based Fluoropolymer solid electrolytes for Lithium-ion batteries. Sustainable Materials and Technologies, 2020, 25, e00176.                                                                   | 1.7              | 26                 |
| 27 | Structural, morphological, thermal and electrochemical characteristics of chitosan: praseodymium<br>triflate based solid polymer electrolytes. International Journal of Green Energy, 2019, 16, 1602-1610. | 2.1              | 4                  |
| 28 | Study of ionically conducting nanocomposites for reflective electrochromic devices. Electrochimica Acta, 2019, 301, 174-182.                                                                               | 2.6              | 12                 |
| 29 | Theoretical simulation of the optimal relation between active material, binder and conductive additive for lithium-ion battery cathodes. Energy, 2019, 172, 68-78.                                         | 4.5              | 39                 |
| 30 | Enhanced performance of fluorinated separator membranes for lithium ion batteries through surface micropatterning. Energy Storage Materials, 2019, 21, 124-135.                                            | 9.5              | 17                 |
| 31 | Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer<br>Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 3749-3761.                                     | 2.5              | 58                 |
| 32 | Catalytic Cyclization of Propargyl Bromoethers via Electrogenerated Nickel(I) Tetramethylcyclam in<br>Ionic Liquids: Water Effects. Journal of the Electrochemical Society, 2019, 166, G17-G24.            | 1.3              | 1                  |
| 33 | Mesoporous poly(vinylidene fluoride-co-trifluoroethylene) membranes for lithium-ion battery separators. Electrochimica Acta, 2019, 301, 97-106.                                                            | 2.6              | 26                 |
| 34 | The physical and electrochromic properties of Prussian Blue thin films electrodeposited on ITO electrodes. Electrochimica Acta, 2019, 304, 282-291.                                                        | 2.6              | 61                 |
| 35 | Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene) Tj ETQq1 1 0.784<br>and Technologies, 2019, 21, e00104.                                                    | 1314 rgBT<br>1.7 | /Overlock 10<br>35 |
| 36 | Luminescent κ-Carrageenan-Based Electrolytes Containing Neodymium Triflate. Molecules, 2019, 24,<br>1020.                                                                                                  | 1.7              | 9                  |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sustainable Dual-Mode Smart Windows for Energy-Efficient Buildings. ACS Applied Energy Materials, 2019, 2, 1951-1960.                                                                         | 2.5 | 27        |
| 38 | Threeâ€Mode Modulation Electrochromic Device with High Energy Efficiency for Windows of Buildings<br>Located in Continental Climatic Regions. Advanced Sustainable Systems, 2019, 3, 1800115. | 2.7 | 22        |
| 39 | SELENIUM BIOFORTIFICATION OF RICE THROUGH FOLIAR APPLICATION WITH SELENITE AND SELENATE.<br>Experimental Agriculture, 2019, 55, 528-542.                                                      | 0.4 | 44        |
| 40 | Silk Fibroin Separators: A Step Toward Lithium-Ion Batteries with Enhanced Sustainability. ACS Applied Materials & Interfaces, 2018, 10, 5385-5394.                                           | 4.0 | 50        |
| 41 | Samarium (III) triflate-doped chitosan electrolyte for solid state electrochromic devices.<br>Electrochimica Acta, 2018, 267, 51-62.                                                          | 2.6 | 24        |
| 42 | Green polymer electrolytes of chitosan doped with erbium triflate. Journal of Non-Crystalline Solids, 2018, 482, 183-191.                                                                     | 1.5 | 21        |
| 43 | Selenium biofortification of rice grains and implications on macronutrients quality. Journal of Cereal Science, 2018, 81, 22-29.                                                              | 1.8 | 64        |
| 44 | Gellan gum– <i>O,O</i> ′â€bis(2â€aminopropyl)â€polyethylene glycol hydrogel for controlled fertilizer<br>release. Journal of Applied Polymer Science, 2018, 135, 45636.                       | 1.3 | 13        |
| 45 | Binary Ce(III) and Li(I) triflate salt composition for solid polymer electrolytes. Ionics, 2018, 24, 2321-2334.                                                                               | 1.2 | 2         |
| 46 | Improved electrochemical performance of rare earth doped LiMn1.5-xNi0.5RExO4 based composite cathodes for lithium-ion batteries. Composites Part B: Engineering, 2018, 139, 55-63.            | 5.9 | 15        |
| 47 | Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings. Energies, 2018, 11, 3513.                                                                                 | 1.6 | 16        |
| 48 | <i>Bombyx mori</i> Silkworm Cocoon Separators for Lithiumâ€Ion Batteries with Superior Safety and Sustainability. Advanced Sustainable Systems, 2018, 2, 1800098.                             | 2.7 | 15        |
| 49 | Ionic Liquid-Assisted Synthesis of Mesoporous Silk Fibroin/Silica Hybrids for Biomedical Applications.<br>ACS Omega, 2018, 3, 10811-10822.                                                    | 1.6 | 23        |
| 50 | Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators.<br>Journal of Membrane Science, 2018, 564, 842-851.                                           | 4.1 | 68        |
| 51 | Seeking the lowest phase transition temperature in a cellulosic system for textile applications.<br>Cellulose, 2018, 25, 3163-3178.                                                           | 2.4 | 8         |
| 52 | Poly(styrene–butene/ethylene–styrene): A New Polymer Binder for High-Performance Printable<br>Lithium-Ion Battery Electrodes. ACS Applied Energy Materials, 2018, 1, 3331-3341.               | 2.5 | 12        |
| 53 | Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries.<br>Electrochemistry Communications, 2017, 77, 58-61.                                               | 2.3 | 54        |
| 54 | Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytes. Molecular Crystals and Liquid Crystals, 2017, 643, 266-273.                       | 0.4 | 20        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochimica Acta, 2017, 232, 22-29.                                 | 2.6 | 42        |
| 56 | Innovative electrolytes based on chitosan and thulium for solid state applications: Synthesis,<br>structural, and thermal characterization. Journal of Electroanalytical Chemistry, 2017, 788, 156-164. | 1.9 | 19        |
| 57 | Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta, 2017, 232, 484-494.                                                                                | 2.6 | 11        |
| 58 | A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytes.<br>Electrochimica Acta, 2017, 240, 474-485.                                                            | 2.6 | 11        |
| 59 | Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes. Solar<br>Energy Materials and Solar Cells, 2017, 169, 98-106.                                               | 3.0 | 28        |
| 60 | Playing with ionic liquids to uncover novel polymer electrolytes. Solid State Ionics, 2017, 300, 46-52.                                                                                                 | 1.3 | 15        |
| 61 | Biofortification of durum wheat (Triticum turgidum L. ssp. durum (Desf.) Husnot) grains with nutrients. Journal of Plant Interactions, 2017, 12, 39-50.                                                 | 1.0 | 12        |
| 62 | Synthesis and improved electrochemical performance of LiMn2–xGdxO4 based cathodes. Solid State<br>Ionics, 2017, 300, 18-25.                                                                             | 1.3 | 15        |
| 63 | Solid polymer electrolytes based on chitosan and Dy(CF3SO3)3 for electrochromic devices. Solid State<br>Ionics, 2017, 310, 112-120.                                                                     | 1.3 | 13        |
| 64 | The effect of nanohydroxyapatite on the behavior of metals in a microcosm simulating a lentic environment. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 219-227.                   | 1.7 | 4         |
| 65 | Ecoâ€Friendly Red Seaweedâ€Derived Electrolytes for Electrochemical Devices. Advanced Sustainable<br>Systems, 2017, 1, 1700070.                                                                         | 2.7 | 20        |
| 66 | Preparation of Poly(vinylidene fluoride) Lithium-Ion Battery Separators and Their Compatibilization with Ionic Liquid - A Green Solvent Approach. ChemistrySelect, 2017, 2, 5394-5402.                  | 0.7 | 30        |
| 67 | d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of<br>Electroanalytical Chemistry, 2017, 799, 249-256.                                                   | 1.9 | 4         |
| 68 | A study on properties of chitosan-PEO electrolyte containing europium salt. Molecular Crystals and<br>Liquid Crystals, 2017, 655, 79-86.                                                                | 0.4 | 1         |
| 69 | Novel Highly Luminescent Amine-Functionalized Bridged Silsesquioxanes. Frontiers in Chemistry, 2017,<br>5, 131.                                                                                         | 1.8 | 7         |
| 70 | Reflective Electrochromic Device with Gelatin-Nanocomposite Electrolyte. ECS Meeting Abstracts, 2017, , .                                                                                               | 0.0 | 0         |
| 71 | Diâ€ureasil Hybrid Electrolytes Incorporating a New Proton Ionic Liquid. ChemElectroChem, 2016, 3,<br>783-789                                                                                           | 1.7 | 5         |
| 72 | Luminescent polymer electrolytes based on chitosan and containing europium triflate. Journal of<br>Rare Earths, 2016, 34, 661-666.                                                                      | 2.5 | 12        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Smart Windows Prepared from <i>Bombyx mori</i> Silk. ChemElectroChem, 2016, 3, 1084-1097.                                                                                                                                                                   | 1.7 | 18        |
| 74 | Influence of Solvent Evaporation Rate in the Preparation of Carbonâ€Coated Lithium Iron Phosphate<br>Cathode Films on Battery Performance. Energy Technology, 2016, 4, 573-582.                                                                             | 1.8 | 34        |
| 75 | High performance screen printable lithium-ion battery cathode ink based on C-LiFePO4. Electrochimica<br>Acta, 2016, 196, 92-100.                                                                                                                            | 2.6 | 50        |
| 76 | Improved performance of rare earth doped LiMn <sub>2</sub> O <sub>4</sub> cathodes for lithium-ion battery applications. New Journal of Chemistry, 2016, 40, 6244-6252.                                                                                     | 1.4 | 58        |
| 77 | Influence of cerium triflate and glycerol on electrochemical performance of chitosan electrolytes for electrochromic devices. Electrochimica Acta, 2016, 217, 108-116.                                                                                      | 2.6 | 29        |
| 78 | Ion conducting and paramagnetic d-PCL(530)/siloxane-based biohybrids doped with Mn2+ ions.<br>Electrochimica Acta, 2016, 211, 804-813.                                                                                                                      | 2.6 | 5         |
| 79 | High performance screen-printed electrodes prepared by a green solvent approach for lithium-ion batteries. Journal of Power Sources, 2016, 334, 65-77.                                                                                                      | 4.0 | 66        |
| 80 | Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO 4 based cathodes. Solid State Ionics, 2016, 295, 57-64.                                                                                                                   | 1.3 | 35        |
| 81 | Electromechanical actuators based on poly(vinylidene fluoride) with [N1Â1Â1Â2(OH)][NTf2] and [C2mim]<br>[C2SO4]. Journal of Materials Science, 2016, 51, 9490-9503.                                                                                         | 1.7 | 40        |
| 82 | Electrical insulation properties of RF-sputtered LiPON layers towards electrochemical stability of lithium batteries. Journal Physics D: Applied Physics, 2016, 49, 485301.                                                                                 | 1.3 | 7         |
| 83 | Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator<br>membranes for improved lithium-ion battery performance. Composites Part B: Engineering, 2016, 96,<br>94-102.                                       | 5.9 | 48        |
| 84 | Prussian blue for electrochromic devices. Journal of Electroanalytical Chemistry, 2016, 777, 33-39.                                                                                                                                                         | 1.9 | 55        |
| 85 | Solid polymer electrolytes based on chitosan and europium triflate. Journal of Non-Crystalline Solids, 2016, 432, 307-312.                                                                                                                                  | 1.5 | 40        |
| 86 | Titanium Oxide Adhesion Layer for High Temperature Annealed Si/Si3N4/TiO x /Pt/LiCoO2 Battery<br>Structures. Journal of Electronic Materials, 2016, 45, 910-916.                                                                                            | 1.0 | 10        |
| 87 | lonic Liquids for the Electroreductive Radical Cyclization of Unsaturated Bromo Derivatives<br>Catalyzed by Nickel(II) Complexes. Journal of the Electrochemical Society, 2016, 163, G21-G25.                                                               | 1.3 | 5         |
| 88 | Lithium cobalt oxide crystallization on flexible polyimide substrate. Journal of Materials Science:<br>Materials in Electronics, 2016, 27, 631-636.                                                                                                         | 1.1 | 3         |
| 89 | <i>Bombyx mori</i> Silk Fibers: An Outstanding Family of Materials. Macromolecular Materials and Engineering, 2015, 300, 1171-1198.                                                                                                                         | 1.7 | 89        |
| 90 | Tailoring poly(vinylidene fluoride- <i>co</i> -chlorotrifluoroethylene) microstructure and physicochemical properties by exploring its binary phase diagram with dimethylformamide. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 761-773. | 2.4 | 36        |

| #   | Article                                                                                                                                                                                                                          | IF                | CITATIONS                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|
| 91  | Eco-Friendly Luminescent Hybrid Materials Based on Eullland LilCo-Doped Chitosan. Journal of the<br>Brazilian Chemical Society, 2015, , .                                                                                        | 0.6               | 1                              |
| 92  | lonic, paramagnetic and photophysical properties of a new biohybrid material incorporating copper perchlorate. Electrochimica Acta, 2015, 173, 76-81.                                                                            | 2.6               | 4                              |
| 93  | Sequential zinc and iron biofortification of bread-wheat grains: from controlled to uncontrolled environments. Crop and Pasture Science, 2015, 66, 1097.                                                                         | 0.7               | 16                             |
| 94  | A chemically stable PVD multilayer encapsulation for lithium microbatteries. Journal Physics D:<br>Applied Physics, 2015, 48, 395306.                                                                                            | 1.3               | 8                              |
| 95  | Variation of the physicochemical and morphological characteristics of solvent casted<br>poly(vinylidene fluoride) along its binary phase diagram with dimethylformamide. Journal of<br>Non-Crystalline Solids, 2015, 412, 16-23. | 1.5               | 53                             |
| 96  | Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both. Electrochimica Acta, 2015, 161, 226-235.                                                            | 2.6               | 29                             |
| 97  | Polymer electrolyte based on DNA and N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium<br>bis(trifluoromethylsulfonyl)imide. Journal of Electroanalytical Chemistry, 2015, 748, 70-75.                                                  | 1.9               | 11                             |
| 98  | Gellan gum—lonic liquid membranes for electrochromic device application. Solid State Ionics, 2015, 274, 64-70.                                                                                                                   | 1.3               | 26                             |
| 99  | Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films.<br>Cellulose, 2015, 22, 1911-1929.                                                                                                | 2.4               | 49                             |
| 100 | Bio-inspired materials for electrochemical devices. , 2015, , .                                                                                                                                                                  |                   | 1                              |
| 101 | Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties.<br>Electrochimica Acta, 2015, 184, 171-178.                                                                                       | 2.6               | 16                             |
| 102 | High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride).<br>Polymer Testing, 2015, 48, 199-205.                                                                                             | 2.3               | 51                             |
| 103 | Effect of the degree of porosity on the performance of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf<br>Solid State Ionics, 2015, 280, 1-9.                                                                          | 50 267 T<br>1.3   | d (fluoride-t<br>33            |
| 104 | Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion. RSC Advances, 2015, 5, 90428-90436.                                                        | 1.7               | 39                             |
| 105 | Electrosynthesis of Heterocyclic Compounds by Radical Cyclization in Environmentally Friendly<br>Media. ECS Transactions, 2015, 66, 1-5.                                                                                         | 0.3               | 0                              |
| 106 | Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene) Tj ETQq0 0 0 rgBT /Ov                                                                                                             | verlock 10<br>2.6 | ) Tf 50 142 <sup>-</sup><br>72 |
| 107 | State of the art and open questions on cathode preparation based on carbon coated lithium iron phosphate. Composites Part B: Engineering, 2015, 83, 333-345.                                                                     | 5.9               | 58                             |

108 Effect of Ionic Liquid Anion Type in the Performance of Solid Polymer Electrolytes Based on Poly(Vinylidene fluorideâ€ŧrifluoroethylene). Electroanalysis, 2015, 27, 457-464.

1.5 27

| #   | Article                                                                                                                                                                                                                                              | IF                | CITATIONS            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 109 | Pectin-based Polymer Electrolytes with Ir(III) Complexes. Molecular Crystals and Liquid Crystals, 2014, 604, 117-125.                                                                                                                                | 0.4               | 16                   |
| 110 | Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend<br>membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight.<br>Solid State Ionics, 2014, 268, 54-67. | 1.3               | 32                   |
| 111 | Thermo-sensitive chitosan–cellulose derivative hydrogels: swelling behaviour and morphologic<br>studies. Cellulose, 2014, 21, 4531-4544.                                                                                                             | 2.4               | 34                   |
| 112 | The Study of Indirect Electroreductive Cyclization of Propargyl Derivatives Using [Ni(tmc)]Br2 as Catalyst in Ionic Liquids. ECS Transactions, 2014, 61, 51-55.                                                                                      | 0.3               | 0                    |
| 113 | Di-urethanesil hybrid electrolytes doped with Mg(CF3SO3)2. Ionics, 2014, 20, 29-36.                                                                                                                                                                  | 1.2               | 1                    |
| 114 | Ultrasound promoted synthesis of Nile Blue derivatives. Ultrasonics Sonochemistry, 2014, 21, 360-366.                                                                                                                                                | 3.8               | 16                   |
| 115 | The Influence of Glycerol and Formaldehyde in Gelatin-Based Polymer Electrolytes. Molecular<br>Crystals and Liquid Crystals, 2014, 591, 64-73.                                                                                                       | 0.4               | 10                   |
| 116 | Chitosan and Ionic Liquid Based Solid Polymer Electrolytes: The Anion Alkyl Chain Length Effect. ECS<br>Transactions, 2014, 61, 51-59.                                                                                                               | 0.3               | 6                    |
| 117 | Quasi-anhydrous proton conducting di-ureasil hybrid electrolytes incorporating a protic ionic<br>liquid. Electrochimica Acta, 2014, 147, 288-293.                                                                                                    | 2.6               | 6                    |
| 118 | Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polymer Testing, 2014, 40, 245-255.                                                      | 2.3               | 84                   |
| 119 | Influence of different salts in poly(vinylidene fluoride-co-trifluoroethylene) electrolyte separator membranes for battery applications. Journal of Electroanalytical Chemistry, 2014, 727, 125-134.                                                 | 1.9               | 10                   |
| 120 | Luminescent Electrochromic Device Based on a Biohybrid Electrolyte Doped with a Mixture of<br>Potassium Triflate and a Europium Â-diketonate Complex. ECS Transactions, 2014, 61, 213-225.                                                           | 0.3               | 5                    |
| 121 | Influence of the porosity degree of poly(vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries. Journal of Power Sources, 2014, 263, 29-36.                                                                  | 4.0               | 37                   |
| 122 | Ionic liquids for solid-state electrolytes and electrosynthesis. Journal of Electroanalytical Chemistry, 2014, 714-715, 63-69.                                                                                                                       | 1.9               | 20                   |
| 123 | Ionically conducting Er3+-doped DNA-based biomembranes for electrochromic devices. Electrochimica<br>Acta, 2014, 120, 327-333.                                                                                                                       | 2.6               | 19                   |
| 124 | Li-ion battery separator membranes based on barium titanate and poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 2<br>276-284.                                                                                                                           | 10 Tf 50 1<br>2.6 | 47 Td (fluoric<br>25 |
| 125 | Luminescent DNA- and Agar-Based Membranes. Journal of Nanoscience and Nanotechnology, 2014, 14, 6685-6691.                                                                                                                                           | 0.9               | 10                   |
| 126 | Durability of PCL Nanocomposites Under Different Environments. Journal of Polymers and the                                                                                                                                                           | 2.4               | 5                    |

<sup>6</sup> Environment, 2013, 21, 710-717.

8

| #   | Article                                                                                                                                                                                                           | IF                | CITATIONS         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 127 | Vibrational analysis of d-PCL(530)/siloxane-based hybrid electrolytes doped with two lithium salts.<br>Ionics, 2013, 19, 1803-1809.                                                                               | 1.2               | 7                 |
| 128 | Microporous membranes of NaY zeolite/poly(vinylidene fluoride–trifluoroethylene) for Li-ion battery separators. Journal of Electroanalytical Chemistry, 2013, 689, 223-232.                                       | 1.9               | 66                |
| 129 | Li-ion battery separator membranes based on poly(vinylidene fluoride-trifluoroethylene)/carbon<br>nanotube composites. Solid State Ionics, 2013, 249-250, 63-71.                                                  | 1.3               | 24                |
| 130 | Study and Characterization of a Novel Polymer Electrolyte Based on Agar Doped with Magnesium<br>Triflate. Molecular Crystals and Liquid Crystals, 2013, 570, 1-11.                                                | 0.4               | 31                |
| 131 | Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications. Solid State Ionics, 2013, 253, 143-150. | 1.3               | 32                |
| 132 | Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry, 2013, 708, 116-123.                                                                                             | 1.9               | 15                |
| 133 | Evaluation of the main processing parameters influencing the performance of poly(vinylidene) Tj ETQq1 1 0.7843 2013, 17, 861-870.                                                                                 | 14 rgBT /(<br>1.2 | Overlock 10<br>33 |
| 134 | Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Advances, 2013, 3, 11404.                                                                 | 1.7               | 266               |
| 135 | Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators<br>in lithium-ion applications. Electrochimica Acta, 2013, 88, 473-476.                                      | 2.6               | 39                |
| 136 | Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion<br>battery applications. Journal of Materials Science, 2013, 48, 6833-6840.                                      | 1.7               | 20                |
| 137 | Gelatin <sub><i>n</i></sub> Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> Polymer Electrolytes<br>for Electrochromic Devices. Electroanalysis, 2013, 25, 1483-1490.                                           | 1.5               | 22                |
| 138 | Electrochemical Applications of Electrolytes based on Ionic Liquids. ECS Transactions, 2013, 45, 235-244.                                                                                                         | 0.3               | 5                 |
| 139 | Flexible thin-film rechargeable lithium battery. , 2013, , .                                                                                                                                                      |                   | 5                 |
| 140 | Thin-film Materials for Solid-State Rechargeable Lithium Batteries. ECS Transactions, 2013, 45, 139-142.                                                                                                          | 0.3               | 4                 |
| 141 | A flat microbial fuel cell for decentralized wastewater valorization: process performance and optimization potential. Environmental Technology (United Kingdom), 2013, 34, 1947-1956.                             | 1.2               | 16                |
| 142 | Preparation and Characterization of Hybrid Oxyethylene/Siloxane Electrolyte Systems.<br>Electroanalysis, 2013, 25, 515-522.                                                                                       | 1.5               | 4                 |
| 143 | Investigation of polymer electrolyte based on agar and ionic liquids. EXPRESS Polymer Letters, 2012, 6, 1007-1016.                                                                                                | 1.1               | 77                |
| 144 | Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for<br>Lithium-Ion Battery Applications. Ferroelectrics, 2012, 430, 103-107.                                           | 0.3               | 20                |

| #   | Article                                                                                                                                                                                                                       | IF                  | CITATIONS           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| 145 | Solid-State Thin-Film Lithium Batteries for Integration in Microsystems. Nanoscience and Technology, 2012, , 575-619.                                                                                                         | 1.5                 | 2                   |
| 146 | Porous Membranes of Montmorillonite/Poly(vinylidene fluorideâ€ŧrifluorethylene) for Liâ€ŀon Battery<br>Separators. Electroanalysis, 2012, 24, 2147-2156.                                                                      | 1.5                 | 55                  |
| 147 | Enhanced solidâ€state electrolytes made of lithium phosphorous oxynitride films. Thin Solid Films, 2012, 522, 85-89.                                                                                                          | 0.8                 | 19                  |
| 148 | Microporous Poly(Vinylidene Fluoride – Trifluoroethylene)/Zeolite Membranes for Lithium-Ion<br>Battery Applications. Procedia Engineering, 2012, 44, 983-984.                                                                 | 1.2                 | 1                   |
| 149 | [P1.034] Comparing Performance of Solid Polymer Electrolytes Based on Poly(Vinylidene Fluoride –) Tj ETQq1 1<br>751-752.                                                                                                      | 0.784314<br>1.2     | 4 rgBT /Ovei<br>o   |
| 150 | Rechargeable Lithium Film Batteries – Encapsulation and Protection. Procedia Engineering, 2012, 47,<br>676-679.                                                                                                               | 1.2                 | 7                   |
| 151 | Poly (É≻-caprolactone)/siloxane biohybrids with application in "smart windows― Synthetic Metals, 2012,<br>161, 2682-2687.                                                                                                     | 2.1                 | 11                  |
| 152 | Characterization of flexible DNA films. Electrochemistry Communications, 2012, 22, 189-192.                                                                                                                                   | 2.3                 | 15                  |
| 153 | Synthesis and characterization of amorphous poly(ethylene oxide)/poly(trimethylene carbonate)<br>polymer blend electrolytes. Electrochimica Acta, 2012, 86, 339-345.                                                          | 2.6                 | 7                   |
| 154 | Structural studies of novel di-ureasil ormolytes doped with lithium hexafluoroantimonate. Solid<br>State Ionics, 2012, 226, 7-14.                                                                                             | 1.3                 | 4                   |
| 155 | Novel polymer electrolytes based on gelatin and ionic liquids. Optical Materials, 2012, 35, 187-195.                                                                                                                          | 1.7                 | 51                  |
| 156 | Agar-Based Gel Electrolyte for Electrochromic Device Application. Molecular Crystals and Liquid<br>Crystals, 2012, 554, 264-272.                                                                                              | 0.4                 | 38                  |
| 157 | Natural Membranes for Application in Biomedical Devices. Molecular Crystals and Liquid Crystals, 2012, 562, 147-155.                                                                                                          | 0.4                 | 3                   |
| 158 | Study of electrochromic devices with nanocomposites polymethacrylate hydroxyethylene resin based electrolyte. Polymers for Advanced Technologies, 2012, 23, 791-795.                                                          | 1.6                 | 15                  |
| 159 | Synthesis and electrochemical characterization of aPEO-based polymer electrolytes. Journal of Solid<br>State Electrochemistry, 2012, 16, 1623-1629.                                                                           | 1.2                 | 3                   |
| 160 | Effect of degree of porosity on the properties of poly(vinylidene fluoride–trifluorethylene) for Li-ion<br>battery separators. Journal of Membrane Science, 2012, 407-408, 193-201.                                           | 4.1                 | 110                 |
| 161 | Photoluminescent polymer electrolyte based on agar and containing europium picrate for<br>electrochemical devices. Materials Science and Engineering B: Solid-State Materials for Advanced<br>Technology, 2012, 177, 488-493. | 1.7                 | 25                  |
| 162 | Effect of the microsctructure and lithium-ion content in poly[(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67<br>applications. Solid State Ionics, 2012, 217, 19-26.                                                     | ' Td (fluori<br>1.3 | de)-co-triflu<br>29 |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Encapsulation of Rechargeable Solid-State Lithium Batteries. ECS Meeting Abstracts, 2012, , .                                                                                             | 0.0 | 1         |
| 164 | Li <sup>+</sup> - and Eu <sup>3+</sup> -Doped Poly(ε-caprolactone)/Siloxane Biohybrid Electrolytes for<br>Electrochromic Devices. ACS Applied Materials & Interfaces, 2011, 3, 2953-2965. | 4.0 | 24        |
| 165 | K+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. Solid State<br>Ionics, 2011, 204-205, 129-139.                                                  | 1.3 | 18        |
| 166 | Di-ureasil hybrids doped with LiBF4: Spectroscopic study of the ionic interactions and hydrogen bonding. Materials Chemistry and Physics, 2011, 129, 385-393.                             | 2.0 | 7         |
| 167 | Preliminary characterisation of LiAsF6 hybrid polymer electrolytes for electrochromic devices.<br>Electrochimica Acta, 2011, 57, 52-57.                                                   | 2.6 | 6         |
| 168 | Stability of nanocomposites of poly(ε-caprolactone) with tungsten trioxide. Journal of Polymer<br>Research, 2011, 18, 1743-1749.                                                          | 1.2 | 14        |
| 169 | Characterization of polyetherâ€poly(methyl methacrylate)â€lithium perchlorate blend electrolytes.<br>Polymers for Advanced Technologies, 2011, 22, 1753-1759.                             | 1.6 | 9         |
| 170 | Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics, 2011, 193, 39-42.                                                                                          | 1.3 | 38        |
| 171 | Functional novel polymer electrolytes containing europium picrate. Materials Research Innovations, 2011, 15, s3-s7.                                                                       | 1.0 | 9         |
| 172 | Synthesis and Thermal Behavior of An Amorphous Solid Polymer Electrolyte. ECS Transactions, 2010, 25, 383-394.                                                                            | 0.3 | 4         |
| 173 | Structure, thermal properties, conductivity and electrochemical stability of di-urethanesil hybrids doped with LiCF3SO3. Ionics, 2010, 16, 193-201.                                       | 1.2 | 13        |
| 174 | Integrated solid-state film lithium battery. Procedia Engineering, 2010, 5, 778-781.                                                                                                      | 1.2 | 5         |
| 175 | Gelatin in electrochromic devices. Optical Materials, 2010, 32, 719-722.                                                                                                                  | 1.7 | 43        |
| 176 | Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes. Electrochimica<br>Acta, 2010, 55, 1495-1502.                                                            | 2.6 | 47        |
| 177 | Mg2+-doped poly(É›-caprolactone)/siloxane biohybrids. Electrochimica Acta, 2010, 55, 1328-1332.                                                                                           | 2.6 | 17        |
| 178 | Lithium-doped hybrid polymer electrolytes. , 2010, , 176-218.                                                                                                                             |     | 4         |
| 179 | Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays. Journal of Materials Chemistry, 2010, 20, 723-730.                         | 6.7 | 37        |
| 180 | Radiological impact of soil biosolid amendment on maize grown in a Brazilian Ferralsol.<br>Radioprotection, 2009, 44, 831-836.                                                            | 0.5 | 0         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Novel Nanocomposites Polymethacrylate Hydroxyethylene Resin Based Electrolyte. ECS Transactions, 2009, 19, 79-83.                                                                      | 0.3 | 0         |
| 182 | Interpenetrating Networks Based on Poly(trimethylene Carbonate) and Poly(ethylene oxide) Blends<br>Doped With Lithium Salts. ECS Transactions, 2009, 16, 157-165.                      | 0.3 | 1         |
| 183 | New Developments in Conducting Polymers Based on Commercial Gelatin. ECS Transactions, 2009, 16, 413-419.                                                                              | 0.3 | 3         |
| 184 | Characterization of Lithium-based Solid Polymer Electrolytes. ECS Transactions, 2009, 19, 15-23.                                                                                       | 0.3 | 3         |
| 185 | Thermal and structural analysis of 4,5,6-trimethoxyisatin. Journal of Molecular Structure, 2009, 932, 38-42.                                                                           | 1.8 | 0         |
| 186 | Application of hybrid materials in solid-state electrochromic devices. Optical Materials, 2009, 31, 1467-1471.                                                                         | 1.7 | 17        |
| 187 | Di-ureasil xerogels containing lithium bis(trifluoromethanesulfonyl)imide for application in solid-state electrochromic devices. Electrochimica Acta, 2009, 54, 1002-1009.             | 2.6 | 41        |
| 188 | The Lead–Lead Oxide Secondary Cell as a Teaching Resource. Journal of Chemical Education, 2009, 86,<br>357.                                                                            | 1.1 | 5         |
| 189 | Solid-state electrochromic devices based on poly(trimethylene carbonate) and lithium salts. Thin<br>Solid Films, 2008, 516, 1480-1483.                                                 | 0.8 | 16        |
| 190 | Performance of electroactive poly(vinylidene fluoride) against UV radiation. Polymer Testing, 2008, 27,<br>818-822.                                                                    | 2.3 | 32        |
| 191 | Preparation of hybrid organic–inorganic materials based on a di-ureasil matrix doped with lithium<br>bis(trifluoromethanesulfonyl)imide. Journal of Power Sources, 2008, 180, 607-611. | 4.0 | 11        |
| 192 | Soil to plant transfer of 137Cs and 60Co in Ferralsol, Nitisol and Acrisol. Journal of Environmental<br>Radioactivity, 2008, 99, 546-553.                                              | 0.9 | 8         |
| 193 | Cationic and anionic environments in LiTFSI-doped di-ureasils with application in solid-state electrochromic devices. Chemical Physics, 2008, 345, 32-40.                              | 0.9 | 14        |
| 194 | Cation coordination and hydrogen bonding in potassium and magnesium based-di-amidosil hybrids.<br>Journal of Molecular Structure, 2008, 874, 128-137.                                  | 1.8 | 0         |
| 195 | Structure and photoluminescence of di-amidosil nanohybrids incorporating europium triflate.<br>Journal of Alloys and Compounds, 2008, 451, 510-515.                                    | 2.8 | 8         |
| 196 | Sol–gel-derived potassium-based di-ureasils for "smart windows― Journal of Materials Chemistry,<br>2007, 17, 4239.                                                                     | 6.7 | 33        |
| 197 | Thermal analysis of a polymorphic azo dye derived from 2-amino-5-nitrothiazole. Thermochimica Acta, 2007, 453, 52-56.                                                                  | 1.2 | 7         |
| 198 | Electrochemical and thermal properties of polymer electrolytes based on poly(epichlorohydrin-co-ethylene oxide-co-ally glycidyl ether). Electrochimica Acta, 2007, 53, 1427-1431.      | 2.6 | 23        |

M M SILVA

| #   | Article                                                                                                                                                      | IF          | CITATIONS      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 199 | Spectroscopic and structural studies of di-ureasils doped with lithium perchlorate. Electrochimica Acta, 2007, 53, 1466-1475.                                | 2.6         | 27             |
| 200 | Highly Photostable Luminescent Poly(ε-caprolactone)siloxane Biohybrids Doped with Europium<br>Complexes. Chemistry of Materials, 2007, 19, 3892-3901.        | 3.2         | 164            |
| 201 | Studies of solid-state electrochromic devices based on PEO/siliceous hybrids doped with lithium perchlorate. Electrochimica Acta, 2007, 52, 2938-2943.       | 2.6         | 50             |
| 202 | Sol–gel preparation of a di-ureasil electrolyte doped with lithium perchlorate. Electrochimica Acta,<br>2006, 52, 1542-1548.                                 | 2.6         | 32             |
| 203 | Sol-gel derived Li+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes. Journal of Solid State<br>Electrochemistry, 2006, 10, 203-210.               | 1.2         | 29             |
| 204 | Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate. Solid State Sciences, 2006, 8, 1318-1321.           | 1.5         | 25             |
| 205 | Study of sol–gel derived di-ureasils doped with zinc triflate. Solid State Sciences, 2006, 8, 1484-1491.                                                     | 1.5         | 14             |
| 206 | Di-ureasil ormolytes doped with Mg2+ ionsPart 1: Morphological, thermal and electrochemical properties. Solid State Ionics, 2005, 176, 1591-1599.            | 1.3         | 31             |
| 207 | Diurea Cross-Linked Poly(oxyethylene)/Siloxane Ormolytes for Lithium Batteries. Journal of the Electrochemical Society, 2005, 152, A429.                     | 1.3         | 39             |
| 208 | Structure and photoluminescent features of di-amide cross-linked alkylene–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3876.                  | 6.7         | 42             |
| 209 | Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate. Electrochimica Acta, 2004, 49, 1887-1891. | 2.6         | 60             |
| 210 | Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 375-381.                                                                             | 1.1         | 9              |
| 211 | Sol–gel-derived POE/siliceous hybrids doped with Na+ ions: morphology and ionic conductivity. Solid<br>State Ionics, 2003, 156, 85-93.                       | 1.3         | 14             |
| 212 | An investigation of the morphological, electrical and optoelectronic properties of short chain Di-ureasils doped with Er3+ ions. Ionics, 2002, 8, 73-78.     | 1.2         | 11             |
| 213 | Study of novel lithium salt-based, plasticized polymer electrolytes. Journal of Power Sources, 2002, 111, 52-57.                                             | 4.0         | 27             |
| 214 | Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate.<br>Electrochimica Acta, 2002, 47, 2421-2428.                      | 2.6         | 28             |
| 215 | Short chain U(600) di-urea cross-linked poly(oxyethylene)/siloxane ormolytes doped with lanthanum triflate salt. Electrochimica Acta, 2002, 47, 2551-2555.   | 2.6         | 7              |
| 216 | Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene) Tj ETQq0 (                                              | ) 0 rgBT /C | overlock 10 Tf |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Preparation and characterization of a polymer electrolyte based on europium picrate. Electrochimica Acta, 2000, 45, 1463-1466.                                                       | 2.6 | 13        |
| 218 | Thermal properties and ionic conductivities of lanthanide-based ormolytes. Electrochimica Acta, 2000, 45, 1467-1471.                                                                 | 2.6 | 32        |
| 219 | An interesting ligand for the preparation of luminescent plastics: The picrate ion. Journal of Chemical Physics, 2000, 112, 3293-3313.                                               | 1.2 | 38        |
| 220 | Sol-gel processing and structural study of europium-doped hybrid materials. Journal of Materials<br>Chemistry, 1999, 9, 1735-1740.                                                   | 6.7 | 61        |
| 221 | Characterisation of a Zn Triflate-based Polymer Electrolyte. Portugaliae Electrochimica Acta, 1999, 17,<br>3-10.                                                                     | 0.4 | 7         |
| 222 | Ionic conduction and thermal properties of poly(ethylene oxide)-Tm(CF3SO3)3 electrolyte films.<br>Electrochimica Acta, 1998, 43, 1511-1515.                                          | 2.6 | 6         |
| 223 | Neodymium doped, sol-gel processed polymer electrolytes. Ionics, 1998, 4, 170-174.                                                                                                   | 1.2 | 5         |
| 224 | A novel class of luminescent polymers obtained by the sol–gel approach. Journal of Alloys and Compounds, 1998, 275-277, 21-26.                                                       | 2.8 | 85        |
| 225 | Morphology and conductivity of electrolytes based on poly(ethylene oxide) - Eu(ClO4)3 films. Ionics, 1997, 3, 134-138.                                                               | 1.2 | 5         |
| 226 | Ionic conduction and thermal properties of poly(ethylene oxide) - Er (CF3SO3)3 films. Ionics, 1995, 1, 342-347.                                                                      | 1.2 | 8         |
| 227 | The study of a lanthanum triflate based polymer electrolyte using electrochemical and thermal techniques. Solid State Ionics, 1993, 60, 73-78.                                       | 1.3 | 21        |
| 228 | The use of thermal techniques in the determination of the phase diagram of lanthanide salt based polymer electrolytes. Journal of Thermal Analysis, 1993, 40, 641-647.               | 0.7 | 7         |
| 229 | Sustainable lithiumâ€ion battery separators based on poly(3â€hydroxybutyrateâ€coâ€hydroxyvalerate) pristine<br>and composite electrospun membranes. Energy Technology, 0, , 2100761. | 1.8 | 4         |
| 230 | Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene): A New Binder for Conventional and Printable Lithium-Ion Batteries. ACS Applied Energy Materials, 0, , .            | 2.5 | 5         |