
Barry P Rosen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arsenic in medicine: past, present and future. BioMetals, 2023, 36, 283-301.	1.8	39
2	Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Environmental Microbiology, 2022, 24, 752-761.	1.8	26
3	Organoarsenical tolerance in <i>Sphingobacterium wenxiniae</i> , a bacterium isolated from activated sludge. Environmental Microbiology, 2022, 24, 762-771.	1.8	10
4	The enigma of environmental organoarsenicals: Insights and implications. Critical Reviews in Environmental Science and Technology, 2022, 52, 3835-3862.	6.6	20
5	Functional characterization of the methylarseniteâ€inducible arsRM operon from Noviherbaspirillum denitrificans   HC18. Environmental Microbiology, 2022, , .	1.8	6
6	<scp>ArsZ</scp> from <i>Ensifer adhaerens</i> <scp>ST2</scp> is a novel methylarsenite oxidase. Environmental Microbiology, 2022, 24, 3013-3021.	1.8	6
7	An <scp>ArsRC</scp> fusion protein enhances arsenate sensing and detoxification. Environmental Microbiology, 2022, 24, 1977-1987.	1.8	3
8	The ArsI C-As lyase: Elucidating the catalytic mechanism of degradation of organoarsenicals. Journal of Inorganic Biochemistry, 2022, 232, 111836.	1.5	5
9	Comamonas testosteroni antA encodes an antimonite-translocating P-type ATPase. Science of the Total Environment, 2021, 754, 142393.	3.9	13
10	NemA Catalyzes Trivalent Organoarsenical Oxidation and Is Regulated by the Trivalent Organoarsenical-Selective Transcriptional Repressor NemR. Environmental Science & Technology, 2021, 55, 6485-6494.	4.6	10
11	Functional and structural characterization of AntR, an Sb(III) responsive transcriptional repressor. Molecular Microbiology, 2021, 116, 427-437.	1.2	5
12	Regulation of arsenic methylation: identification of the transcriptional region of the human AS3MT gene. Cell Biology and Toxicology, 2021, , 1.	2.4	4
13	Aquaglyceroporin AqpS from Sinorhizobium meliloti conducts both trivalent and pentavalent methylarsenicals. Chemosphere, 2021, 270, 129379.	4.2	9
14	Antimicrobial Activity of Metals and Metalloids. Annual Review of Microbiology, 2021, 75, 175-197.	2.9	32
15	Anaerobic As(III) Oxidation Coupled with Nitrate Reduction and Attenuation of Dissolved Arsenic by <i>Noviherbaspirillum</i> Species. ACS Earth and Space Chemistry, 2021, 5, 2115-2123.	1.2	13
16	Identification of the Biosynthetic Gene Cluster for the Organoarsenical Antibiotic Arsinothricin. Microbiology Spectrum, 2021, 9, e0050221.	1.2	14
17	Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. Mutation Research - Reviews in Mutation Research, 2021, 788, 108396.	2.4	13
18	<scp>ArsV</scp> and <scp>ArsW</scp> provide synergistic resistance to the antibiotic methylarsenite. Environmental Microbiology, 2021, 23, 7550-7562.	1.8	11

#	Article	IF	CITATIONS
19	Identification of a MarR Subfamily That Regulates Arsenic Resistance Genes. Applied and Environmental Microbiology, 2021, 87, e0158821.	1.4	7
20	Chemical synthesis of the organoarsenical antibiotic arsinothricin. RSC Advances, 2021, 11, 35600-35606.	1.7	0
21	Organoarsenical compounds: Occurrence, toxicology and biotransformation. Critical Reviews in Environmental Science and Technology, 2020, 50, 217-243.	6.6	39
22	The Pseudomonas putida NfnB nitroreductase confers resistance to roxarsone. Science of the Total Environment, 2020, 748, 141339.	3.9	10
23	Semisynthesis of the Organoarsenical Antibiotic Arsinothricin. Journal of Natural Products, 2020, 83, 2809-2813.	1.5	10
24	Comparative Cytotoxicity of Inorganic Arsenite and Methylarsenite in Human Brain Cells. ACS Chemical Neuroscience, 2020, 11, 743-751.	1.7	16
25	The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10414-10421.	3.3	96
26	The Arsenic Methylation Cycle: How Microbial Communities Adapted Methylarsenicals for Use as Weapons in the Continuing War for Dominance. Frontiers in Environmental Science, 2020, 8, .	1.5	65
27	Organoarsenicals inhibit bacterial peptidoglycan biosynthesis by targeting the essential enzyme MurA. Chemosphere, 2020, 254, 126911.	4.2	7
28	Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont <i>Sinorhizobium meliloti</i> . Environmental Science & Technology, 2019, 53, 13648-13656.	4.6	17
29	Genomewide Analysis of Mode of Action of the <i>S</i> -Adenosylmethionine Analogue Sinefungin in Leishmania infantum. MSystems, 2019, 4, .	1.7	13
30	Structures of two ArsR As(III)-responsive transcriptional repressors: Implications for the mechanism of derepression. Journal of Structural Biology, 2019, 207, 209-217.	1.3	26
31	Role of ArsEFG in Roxarsone and Nitarsone Detoxification and Resistance. Environmental Science & Technology, 2019, 53, 6182-6191.	4.6	27
32	Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic. Communications Biology, 2019, 2, 131.	2.0	32
33	Pathways of arsenic uptake and efflux. Environment International, 2019, 126, 585-597.	4.8	207
34	Identification of Steps in the Pathway of Arsenosugar Biosynthesis. Environmental Science & Technology, 2019, 53, 634-641.	4.6	25
35	The antibiotic action of methylarsenite is an emergent property of microbial communities. Molecular Microbiology, 2019, 111, 487-494.	1.2	59
36	Reorientation of the Methyl Group in MAs(III) is the Rate-Limiting Step in the ArsM As(III) <i>S</i> -Adenosylmethionine Methyltransferase Reaction. ACS Omega, 2018, 3, 3104-3112.	1.6	14

#	Article	IF	CITATIONS
37	Arsenic methylation by a novel ArsM As(III) <i>S</i> â€adenosylmethionine methyltransferase that requires only two conserved cysteine residues. Molecular Microbiology, 2018, 107, 265-276.	1.2	42
38	Thiolation in arsenic metabolism: a chemical perspective. Metallomics, 2018, 10, 1368-1382.	1.0	30
39	Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility. PLoS ONE, 2018, 13, e0197561.	1.1	9
40	Arsenic-hypertolerant and arsenic-reducing bacteria isolated from wells in Tucumán, Argentina. Canadian Journal of Microbiology, 2018, 64, 876-886.	0.8	15
41	Directed Evolution of Saccharomyces cerevisiae for Increased Selenium Accumulation. Microorganisms, 2018, 6, 81.	1.6	9
42	The Structure of an As(III) <i>S</i> -Adenosylmethionine Methyltransferase with 3-Coordinately Bound As(III) Depicts the First Step in Catalysis. Biochemistry, 2018, 57, 4083-4092.	1.2	28
43	Conserved cysteine residues determine substrate specificity in a novel <scp>A</scp> s(<scp>III</scp>) <scp>S</scp> â€adenosylmethionine methyltransferase from <scp><i>A</i></scp> <i>spergillus fumigatus</i> . Molecular Microbiology, 2017, 104, 250-259.	1.2	20
44	Bacterial resistance to arsenic protects against protist killing. BioMetals, 2017, 30, 307-311.	1.8	13
45	Nonsynonymous Polymorphisms in the Human AS3MT Arsenic Methylation Gene: Implications for Arsenic Toxicity. Chemical Research in Toxicology, 2017, 30, 1481-1491.	1.7	26
46	Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. Environmental Science & Technology, 2017, 51, 7326-7339.	4.6	223
47	Structural studies of the ArsD arsenic metallochaperone using molecular dynamics. Journal of Computational Methods in Sciences and Engineering, 2017, 17, 227-233.	0.1	Ο
48	Arsenic methylation by a genetically engineered Rhizobium-legume symbiont. Plant and Soil, 2017, 416, 259-269.	1.8	48
49	Biochemical Characterization of ArsI: A Novel C–As Lyase for Degradation of Environmental Organoarsenicals. Environmental Science & Technology, 2017, 51, 11115-11125.	4.6	19
50	A novel MAs(III)â€selective ArsR transcriptional repressor. Molecular Microbiology, 2017, 106, 469-478.	1.2	45
51	Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Scientific Reports, 2017, 7, 7741.	1.6	60
52	Synergistic interaction of glyceraldehydesâ€3â€phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Molecular Microbiology, 2016, 100, 945-953.	1.2	90
53	Organoarsenical Biotransformations by <i>Shewanella putrefaciens</i> . Environmental Science & Technology, 2016, 50, 7956-7963.	4.6	50
54	Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium. Anaerobe, 2016, 39, 117-123.	1.0	26

#	Article	IF	CITATIONS
55	Arsenic Methylation in <i>Arabidopsis thaliana</i> Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity. Journal of Agricultural and Food Chemistry, 2016, 64, 2674-2681.	2.4	39
56	Structure of the ArsI C–As Lyase: Insights into the Mechanism of Degradation of Organoarsenical Herbicides and Growth Promoters. Journal of Molecular Biology, 2016, 428, 2462-2473.	2.0	17
57	The organoarsenical biocycle and the primordial antibiotic methylarsenite. Metallomics, 2016, 8, 1047-1055.	1.0	56
58	Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants, 2016, 2, 15202.	4.7	88
59	Efficient Arsenic Methylation and Volatilization Mediated by a Novel Bacterium from an Arsenic-Contaminated Paddy Soil. Environmental Science & Technology, 2016, 50, 6389-6396.	4.6	86
60	New mechanisms of bacterial arsenic resistance. Biomedical Journal, 2016, 39, 5-13.	1.4	142
61	Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8. Molecular and Cellular Biology, 2016, 36, 913-922.	1.1	42
62	Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucumán, Argentina. International Biodeterioration and Biodegradation, 2016, 107, 147-153.	1.9	25
63	The optimal time for surgery in women with serous ovarian cancer. Canadian Journal of Surgery, 2016, 59, 223-232.	0.5	16
64	<scp>ArsP</scp> : a methylarsenite efflux permease. Molecular Microbiology, 2015, 98, 625-635.	1.2	87
65	Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE, 2015, 10, e0128106.	1.1	44
66	Draft Genome Sequence of Burkholderia sp. MR1, a Methylarsenate-Reducing Bacterial Isolate from Florida Golf Course Soil. Genome Announcements, 2015, 3, .	0.8	2
67	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	9.4	221
68	Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> -Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1574-1584.	1.1	28
69	A disulfide-bond cascade mechanism for arsenic(III) <i>S</i> -adenosylmethionine methyltransferase. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 505-515.	2.5	39
70	Genetically Engineering Bacillus subtilis with a Heat-Resistant Arsenite Methyltransferase for Bioremediation of Arsenic-Contaminated Organic Waste. Applied and Environmental Microbiology, 2015, 81, 6718-6724.	1.4	68
71	High-throughput screening-compatible assays of As(III) S-adenosylmethionine methyltransferase activity. Analytical Biochemistry, 2015, 480, 67-73.	1.1	11
72	<scp>ArsH</scp> is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Molecular Microbiology, 2015, 96, 1042-1052.	1.2	143

#	Article	IF	CITATIONS
73	Arsenic Methylation and Volatilization by Arsenite <i>S</i> -Adenosylmethionine Methyltransferase in Pseudomonas alcaligenes NBRC14159. Applied and Environmental Microbiology, 2015, 81, 2852-2860.	1.4	84
74	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	5.8	63
75	Common variants at the <i>CHEK2</i> gene locus and risk of epithelial ovarian cancer. Carcinogenesis, 2015, 36, 1341-1353.	1.3	24
76	Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium. Genome Announcements, 2015, 3, .	0.8	7
77	As(III) S-Adenosylmethionine Methyltransferases and Other Arsenic Binding Proteins. Geomicrobiology Journal, 2015, 32, 570-576.	1.0	41
78	Identification of Small Molecule Inhibitors of Human As(III) <i>S</i> -Adenosylmethionine Methyltransferase (AS3MT). Chemical Research in Toxicology, 2015, 28, 2419-2425.	1.7	14
79	Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). Journal of Genetics and Genome Research, 2015, 2, .	0.3	25
80	A Câ‹As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7701-7706.	3.3	116
81	Mutations in the ArsA ATPase that restore interaction with the ArsD metallochaperone. BioMetals, 2014, 27, 1263-1275.	1.8	5
82	Biosensors for Inorganic and Organic Arsenicals. Biosensors, 2014, 4, 494-512.	2.3	52
83	Crystallization and preliminary X-ray crystallographic studies of the ArsI C–As lyase from <i>Thermomonospora curvata</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 761-764.	0.4	11
84	Crystallization and preliminary X-ray crystallographic studies of CrArsM, an arsenic(III) <i>S</i> -adenosylmethionine methyltransferase from <i>Chlamydomonas reinhardtii</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1385-1388.	0.4	4
85	Aquaglyceroporins: Generalized metalloid channels. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1583-1591.	1.1	166
86	Biosensor for Organoarsenical Herbicides and Growth Promoters. Environmental Science & Technology, 2014, 48, 1141-1147.	4.6	51
87	Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences, 2014, 42, 443-467.	4.6	423
88	Pathway of Human AS3MT Arsenic Methylation. Chemical Research in Toxicology, 2014, 27, 1979-1989.	1.7	108
89	Structure ofEscherichia coliGrx2 in complex with glutathione: a dual-function hybrid of glutaredoxin and glutathioneS-transferase. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1907-1913.	2.5	2
90	Engineering the Soil Bacterium Pseudomonas putida for Arsenic Methylation. Applied and Environmental Microbiology, 2013, 79, 4493-4495.	1.4	85

#	Article	IF	CITATIONS
91	Arsenic Methyltransferases. , 2013, , 138-143.		20
92	Efflux Permease CgAcr3-1 of Corynebacterium glutamicum Is an Arsenite-specific Antiporter. Journal of Biological Chemistry, 2012, 287, 723-735.	1.6	35
93	A Novel Biosensor Selective for Organoarsenicals. Applied and Environmental Microbiology, 2012, 78, 7145-7147.	1.4	22
94	Identification of Catalytic Residues in the As(III) <i>S</i> -Adenosylmethionine Methyltransferase. Biochemistry, 2012, 51, 944-951.	1.2	84
95	Arsenic biomethylation by photosynthetic organisms. Trends in Plant Science, 2012, 17, 155-162.	4.3	206
96	Pathways of Arsenic Uptake and Efflux. Current Topics in Membranes, 2012, 69, 325-358.	0.5	196
97	Structure of an As(III) <i>S</i> -Adenosylmethionine Methyltransferase: Insights into the Mechanism of Arsenic Biotransformation. Biochemistry, 2012, 51, 5476-5485.	1.2	109
98	Demethylation of methylarsonic acid by a microbial community. Environmental Microbiology, 2011, 13, 1205-1215.	1.8	112
99	Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase. Molecular Microbiology, 2011, 79, 872-881.	1.2	27
100	Arsenic biotransformation and volatilization in transgenic rice. New Phytologist, 2011, 191, 49-56.	3.5	116
101	The ArsD As(III) metallochaperone. BioMetals, 2011, 24, 391-399.	1.8	32
102	Resonance assignments and secondary structure prediction of the As(III) metallochaperone ArsD in solution. Biomolecular NMR Assignments, 2011, 5, 109-112.	0.4	4
103	Life and death with arsenic. BioEssays, 2011, 33, 350-357.	1.2	70
104	Biotransformation and Volatilization of Arsenic by Three Photosynthetic Cyanobacteria. Plant Physiology, 2011, 156, 1631-1638.	2.3	171
105	Pentavalent methylated arsenicals are substrates of human AQP9. BioMetals, 2010, 23, 119-127.	1.8	34
106	Biochemical characterization of a novel ArsA ATPase complex from <i>Alkaliphilus metalliredigens</i> QYMF. FEBS Letters, 2010, 584, 3089-3094.	1.3	15
107	Crystallization and preliminary X-ray crystallographic analysis of the ArsM arsenic(III) <i>S</i> -adenosylmethionine methyltransferase. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1050-1052.	0.7	16
108	Jen1p: A High Affinity Selenite Transporter in Yeast. Molecular Biology of the Cell, 2010, 21, 3934-3941.	0.9	69

#	Article	IF	CITATIONS
109	Arsenic Binding and Transfer by the ArsD As(III) Metallochaperone. Biochemistry, 2010, 49, 3658-3666.	1.2	51
110	Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases. Biochemistry, 2010, 49, 802-809.	1.2	36
111	The 1.4 Ã Crystal Structure of the ArsD Arsenic Metallochaperone Provides Insights into Its Interaction with the ArsA ATPase. Biochemistry, 2010, 49, 5206-5212.	1.2	20
112	Trivalent arsenicals and glucose use different translocation pathways in mammalian GLUT1. Metallomics, 2010, 2, 211-219.	1.0	40
113	Arsenic Transport in Prokaryotes and Eukaryotic Microbes. Advances in Experimental Medicine and Biology, 2010, 679, 47-55.	0.8	44
114	Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5213-5217.	3.3	267
115	Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15956-15960.	3.3	86
116	Properties of Arsenite Efflux Permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum. Journal of Biological Chemistry, 2009, 284, 19887-19895.	1.6	95
117	Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?. Current Opinion in Biotechnology, 2009, 20, 220-224.	3.3	96
118	Arsenic transport by zebrafish aquaglyceroporins. BMC Molecular Biology, 2009, 10, 104.	3.0	84
119	Transport pathways for arsenic and selenium: A minireview. Environment International, 2009, 35, 512-515.	4.8	219
120	Characterization of the metalloactivation domain of an arsenite/antimonite resistance pump. Molecular Microbiology, 2008, 67, 392-402.	1.2	15
121	Aquaglyceroporins: ancient channels for metalloids. Journal of Biology, 2008, 7, 33.	2.7	79
122	An Arsenate-activated Glutaredoxin from the Arsenic Hyperaccumulator Fern Pteris vittata L. Regulates Intracellular Arsenite. Journal of Biological Chemistry, 2008, 283, 6095-6101.	1.6	80
123	Evolution of Metal(loid) Binding Sites in Transcriptional Regulators. Journal of Biological Chemistry, 2008, 283, 25706-25714.	1.6	66
124	Convergent Evolution of a New Arsenic Binding Site in the ArsR/SmtB Family of Metalloregulators. Journal of Biological Chemistry, 2007, 282, 34346-34355.	1.6	77
125	ArsD Residues Cys12, Cys13, and Cys18 Form an As(III)-binding Site Required for Arsenic Metallochaperone Activity. Journal of Biological Chemistry, 2007, 282, 16783-16791.	1.6	40
126	Crystal structure of the flavoprotein ArsH from <i>Sinorhizobium meliloti</i> . FEBS Letters, 2007, 581, 3996-4000.	1.3	55

#	Article	IF	CITATIONS
127	Arsenic Metabolism in Prokaryotic and Eukaryotic Microbes. , 2007, , 371-406.		119
128	A CDC25 homologue from rice functions as an arsenate reductase. New Phytologist, 2007, 174, 311-321.	3.5	167
129	ArsD: an As(III) metallochaperone for the ArsAB As(III)-translocating ATPase. Journal of Bioenergetics and Biomembranes, 2007, 39, 453-458.	1.0	69
130	Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochemical and Biophysical Research Communications, 2006, 351, 424-430.	1.0	117
131	Cys-113 and Cys-422 Form a High Affinity Metalloid Binding Site in the ArsA ATPase. Journal of Biological Chemistry, 2006, 281, 9925-9934.	1.6	31
132	Methylarsonous Acid Transport by Aquaglyceroporins. Environmental Health Perspectives, 2006, 114, 527-531.	2.8	66
133	Arsenic detoxification and evolution of trimethylarsine gas by a microbial arseniteS-adenosylmethionine methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2075-2080.	3.3	587
134	An arsenic metallochaperone for an arsenic detoxification pump. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15617-15622.	3.3	175
135	Modulation in aquaglyceroporinAQP1gene transcript levels in drug-resistantLeishmania. Molecular Microbiology, 2005, 57, 1690-1699.	1.2	137
136	Novel Pathway for Arsenic Detoxification in the Legume Symbiont Sinorhizobium meliloti. Journal of Bacteriology, 2005, 187, 6991-6997.	1.0	147
137	Crystal Structure of the Staphylococcus aureus pl258 CadC Cd(II)/Pb(II)/Zn(II)-Responsive Repressor. Journal of Bacteriology, 2005, 187, 4214-4221.	1.0	91
138	Arsenic Trioxide Uptake by Hexose Permeases in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 17312-17318.	1.6	122
139	As(III) and Sb(III) Uptake by GlpF and Efflux by ArsB in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 18334-18341.	1.6	248
140	Leishmania major LmACR2 Is a Pentavalent Antimony Reductase That Confers Sensitivity to the Drug Pentostam. Journal of Biological Chemistry, 2004, 279, 37445-37451.	1.6	134
141	Experimental and Theoretical Characterization of Arsenite in Water:Â Insights into the Coordination Environment of Asâ^'O. Inorganic Chemistry, 2004, 43, 2954-2959.	1.9	146
142	Drug Uptake and Modulation of Drug Resistance in Leishmania by an Aquaglyceroporin. Journal of Biological Chemistry, 2004, 279, 31010-31017.	1.6	232
143	Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochemical and Biophysical Research Communications, 2004, 316, 1178-1185.	1.0	135
144	Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochemical and Biophysical Research Communications, 2004, 322, 836-841.	1.0	80

#	Article	IF	CITATIONS
145	Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. New Phytologist, 2003, 159, 431-441.	3.5	54
146	Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6053-6058.	3.3	455
147	Biochemistry of arsenic detoxification. FEBS Letters, 2002, 529, 86-92.	1.3	663
148	Arsenate reductases in prokaryotes and eukaryotes Environmental Health Perspectives, 2002, 110, 745-748.	2.8	269
149	Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 133, 689-693.	0.8	182
150	Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiology Reviews, 2002, 26, 311-325.	3.9	578
151	Spectroscopic Properties of the Metalloregulatory Cd(II) and Pb(II) Sites ofS. aureuspl258 CadCâ€. Biochemistry, 2001, 40, 4426-4436.	1.2	91
152	Role of vicinal cysteine pairs in metalloid sensing by the ArsD As(III)-responsive repressor. Molecular Microbiology, 2001, 41, 687-696.	1.2	19
153	The Leishmania ATP-binding Cassette Protein PGPA Is an Intracellular Metal-Thiol Transporter ATPase. Journal of Biological Chemistry, 2001, 276, 26301-26307.	1.6	205
154	NreB from Achromobacter xylosoxidans 31A Is a Nickel-Induced Transporter Conferring Nickel Resistance. Journal of Bacteriology, 2001, 183, 2803-2807.	1.0	93
155	Conformational Changes in Four Regions of the Escherichia coli ArsA ATPase Link ATP Hydrolysis to Ion Translocation. Journal of Biological Chemistry, 2001, 276, 30414-30422.	1.6	38
156	The linker peptide of the ArsA ATPase. Molecular Microbiology, 2000, 35, 361-367.	1.2	31
157	Role of conserved histidine residues in metalloactivation of the ArsA ATPase. , 2000, 13, 281-288.		14
158	Purification and Characterization of Acr2p, theSaccharomyces cerevisiae Arsenate Reductase. Journal of Biological Chemistry, 2000, 275, 21149-21157.	1.6	202
159	Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Molecular Microbiology, 1999, 34, 726-735.	1.2	123
160	Metalloregulation of Soft Metal Resistance Pumps. , 1999, , 5-19.		20
161	The role of efflux in bacterial resistance to soft metals and metalloids. Essays in Biochemistry, 1999, 34, 1-15.	2.1	34
162	Saccharomyces cerevisiae ACR2gene encodes an arsenate reductase. FEMS Microbiology Letters, 1998, 168, 127-136.	0.7	118

#	Article	IF	CITATIONS
163	[7] Arsenical pumps in prokaryotes and eukaryotes. Methods in Enzymology, 1998, 292, 82-97.	0.4	11
164	Ligand Interactions of the ArsC Arsenate Reductase. Journal of Biological Chemistry, 1997, 272, 21084-21089.	1.6	45
165	Tryptophan Fluorescence Reports Nucleotide-induced Conformational Changes in a Domain of the ArsA ATPase. Journal of Biological Chemistry, 1997, 272, 19731-19737.	1.6	67
166	Alternate Energy Coupling of ArsB, the Membrane Subunit of the Ars Anion-translocating ATPase. Journal of Biological Chemistry, 1997, 272, 326-331.	1.6	61
167	Metalloregulatory Properties of the ArsD Repressor. Journal of Biological Chemistry, 1997, 272, 14257-14262.	1.6	78
168	Dimerization Is Essential for DNA Binding and Repression by the ArsR Metalloregulatory Protein of Escherichia coli. Journal of Biological Chemistry, 1997, 272, 15734-15738.	1.6	44
169	Bacterial resistance to heavy metals and metalloids. Journal of Biological Inorganic Chemistry, 1996, 1, 273-277.	1.1	73
170	The Chromosomal arsR Gene of Escherichia coli Encodes a trans-acting Metalloregulatory Protein. Journal of Biological Chemistry, 1996, 271, 2427-2432.	1.6	113
171	Interaction of ATP Binding Sites in the ArsA ATPase, the Catalytic Subunit of the Ars Pump. Journal of Biological Chemistry, 1996, 271, 25247-25252.	1.6	30
172	The Role of Arsenic-Thiol Interactions in Metalloregulation of the ars Operon. Journal of Biological Chemistry, 1996, 271, 9291-9297.	1.6	153
173	Spatial Proximity of Cys113, Cys172, and Cys422 in the Metalloactivation Domain of the ArsA ATPase. Journal of Biological Chemistry, 1996, 271, 24465-24470.	1.6	70
174	Role of Cysteinyl Residues in Metalloactivation of the Oxyanion-translocating ArsA ATPase. Journal of Biological Chemistry, 1995, 270, 11245-11250.	1.6	59
175	Interaction of substrate and effector binding sites in the ArsA ATPase. Biochemistry, 1995, 34, 13622-13626.	1.2	28
176	Identification of an Essential Cysteinyl Residue in the ArsC Arsenate Reductase of Plasmid R773. Biochemistry, 1995, 34, 13472-13476.	1.2	43
177	Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Molecular Microbiology, 1994, 12, 301-306.	1.2	136
178	Properties of the Arsenate Reductase of Plasmid R773. Biochemistry, 1994, 33, 7288-7293.	1.2	188
179	The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Molecular Microbiology, 1993, 8, 615-623.	1.2	118
180	Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Molecular Microbiology, 1993, 8, 637-642.	1.2	73

#	Article	IF	CITATIONS
181	Transport systems encoded by bacterial plasmids. Journal of Bioenergetics and Biomembranes, 1990, 22, 493-507.	1.0	41
182	Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Research, 1990, 18, 619-624.	6.5	137
183	[23] Preparation of everted membrane vesicles from Escherichia coli for the measurement of calcium transport. Methods in Enzymology, 1979, 56, 233-241.	0.4	57
184	Orientation of the protonmotive force in membrane vesicles of escherichia coli. Journal of Supramolecular Structure, 1977, 7, 15-27.	2.3	16
185	Microbial arsenic: from geocycles to genes and enzymes. , 0, .		10
186	Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. , 0, .		4