
Heikki Setälä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899646/publications.pdf Version: 2024-02-01

Η ΓΙΚΚΙ SETÃ ΒΑ Β

#	Article	IF	CITATIONS
1	The invasive herb Lupinus polyphyllus can reduce plant species richness independently of local invasion age. Biological Invasions, 2022, 24, 425-436.	1.2	6
2	Immune-mediated disease associated microbial community responded to PAH stress in phyllosphere of roadside greenspaces in Shanghai. Environmental Pollution, 2022, 292, 118379.	3.7	8
3	Heavy metals from heavy land use? Spatio-temporal patterns of urban runoff metal loads. Science of the Total Environment, 2022, 817, 152855.	3.9	13
4	The ability of selected filter materials in removing nutrients, metals, and microplastics from stormwater in biofilter structures. Journal of Environmental Quality, 2021, 50, 465-475.	1.0	26
5	The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	83
6	Evergreen trees stimulate carbon accumulation in urban soils via high root production and slow litter decomposition. Science of the Total Environment, 2021, 774, 145129.	3.9	22
7	Urbanization minimizes the effects of plant traits on soil provisioned ecosystem services across climatic regions. Global Change Biology, 2021, 27, 4139-4153.	4.2	12
8	Nutrient dynamics and development of soil fauna in vegetated roofs with the focus on biochar amendment. Nature-based Solutions, 2021, 1, 100001.	1.6	4
9	A more sustainable urban future calls for action: the city of Lahti as European Green Capital 2021. Journal of Urban Ecology, 2021, 7, .	0.6	2
10	Vegetation type and age matter: How to optimize the provision of ecosystem services in urban parks. Urban Forestry and Urban Greening, 2021, 66, 127392.	2.3	6
11	Self-contamination from clothing in microplastics research. Ecotoxicology and Environmental Safety, 2020, 189, 110036.	2.9	60
12	Effects of forests on particle number concentrations in near-road environments across three geographic regions. Environmental Pollution, 2020, 266, 115294.	3.7	14
13	Impacts of urban roadside forest patches on NO2 concentrations. Atmospheric Environment, 2020, 232, 117584.	1.9	10
14	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	2.4	46
15	Variation in soil lignin protection mechanisms in five successional gradients of mixed broadleaf–pine forests. Soil Science Society of America Journal, 2020, 84, 232-250.	1.2	5
16	Quantifying carbon stocks in urban parks under cold climate conditions. Urban Forestry and Urban Greening, 2020, 49, 126633.	2.3	46
17	Earthworm assemblages in urban habitats across biogeographical regions. Applied Soil Ecology, 2020, 151, 103530.	2.1	20
18	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	13.7	635

Ηεικκι SetÃæÃ¤

#	Article	IF	CITATIONS
19	Metagenomics Reveals Bacterial and Archaeal Adaptation to Urban Land-Use: N Catabolism, Methanogenesis, and Nutrient Acquisition. Frontiers in Microbiology, 2019, 10, 2330.	1.5	12
20	Automated Urban Rainfall–Runoff Model Generation with Detailed Land Cover and Flow Routing. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	0.8	15
21	Microbial communities in local and transplanted soils along a latitudinal gradient. Catena, 2019, 173, 456-464.	2.2	11
22	Over twenty years farmland reforestation decreases fungal diversity of soils, but stimulates the return of ectomycorrhizal fungal communities. Plant and Soil, 2018, 427, 231-244.	1.8	26
23	The effects of trees on air pollutant levels in peri-urban near-road environments. Urban Forestry and Urban Greening, 2018, 30, 62-71.	2.3	55
24	The impact of urban trees on concentrations of PAHs and other gaseous air pollutants in Yanji, northeast China. Atmospheric Environment, 2018, 192, 151-159.	1.9	21
25	Release of Carbon in Different Molecule Size Fractions from Decomposing Boreal Mor and Peat as Affected by Enchytraeid Worms. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	4
26	Nitrogen addition impacts on the emissions of greenhouse gases depending on the forest type: a case study in Changbai Mountain, Northeast China. Journal of Soils and Sediments, 2017, 17, 23-34.	1.5	15
27	Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental Microbiology, 2017, 19, 1281-1295.	1.8	114
28	The matrix affects carabid beetle assemblages in linear urban ruderal habitats. Urban Ecosystems, 2017, 20, 971-981.	1.1	9
29	Spatioâ€ŧemporal patterns of major ions in urban stormwater under cold climate. Hydrological Processes, 2017, 31, 1564-1577.	1.1	20
30	Assessing above-ground biomass of open-grown urban trees: A comparison between existing models and a volume-based approach. Urban Forestry and Urban Greening, 2017, 21, 239-246.	2.3	18
31	Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology and Evolution, 2017, 1, 123.	3.4	76
32	Nutrient leaching, soil pH and changes in microbial community increase with time in lead-contaminated boreal forest soil at a shooting range area. Environmental Science and Pollution Research, 2017, 24, 5415-5425.	2.7	6
33	A large-scale lysimeter study of stormwater biofiltration under cold climatic conditions. Ecological Engineering, 2017, 100, 89-98.	1.6	19
34	Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age. Applied and Environmental Microbiology, 2017, 83, .	1.4	29
35	Greenbelts do not reduce NO 2 concentrations in near-road environments. Urban Climate, 2017, 21, 306-317.	2.4	23
36	Trees in urban parks and forests reduce O3, but not NO2 concentrations in Baltimore, MD, USA. Atmospheric Environment, 2017, 167, 73-80.	1.9	42

Heikki SetÃøÃ¤

#	Article	IF	CITATIONS
37	Urban forests near roads do not reduce gaseous air pollutant concentrations but have an impact on particles levels. Landscape and Urban Planning, 2017, 158, 39-47.	3.4	92
38	Introducing GLUSEEN: a new open access and experimental network in urban soil ecology. Journal of Urban Ecology, 2017, 3, .	0.6	23
39	Monetary value of urban green space as an ecosystem service provider: A case study of urban runoff management in Finland. Ecosystem Services, 2017, 28, 17-27.	2.3	31
40	Vegetation Type and Age Drive Changes in Soil Properties, Nitrogen, and Carbon Sequestration in Urban Parks under Cold Climate. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	72
41	Parameterization of a Hydrological Model for a Large, Ungauged Urban Catchment. Water (Switzerland), 2016, 8, 443.	1.2	10
42	Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter – Exploratory study. Environmental Pollution, 2016, 208, 233-240.	3.7	28
43	A Global Comparison of Surface Soil Characteristics Across Five Cities. Soil Science, 2015, 180, 136-145.	0.9	59
44	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	1.4	43
45	Soil processes and tree growth at shooting ranges in a boreal forest reflect contamination history and lead-induced changes in soil food webs. Science of the Total Environment, 2015, 518-519, 320-327.	3.9	18
46	Birch (Betula spp.) wood biochar is a potential soil amendment to reduce glyphosate leaching in agricultural soils. Journal of Environmental Management, 2015, 164, 46-52.	3.8	27
47	Key factors affecting urban runoff pollution under cold climatic conditions. Journal of Hydrology, 2015, 529, 1578-1589.	2.3	26
48	Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21, 973-985.	4.2	641
49	Urban snow indicates pollution originating from road traffic. Environmental Pollution, 2014, 195, 56-63.	3.7	63
50	Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5491.	3.3	15
51	Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area?. Ecotoxicology, 2014, 23, 437-448.	1.1	22
52	Effects of land use intensity on stormwater runoff and its temporal occurrence in cold climates. Hydrological Processes, 2014, 28, 2639-2650.	1.1	51
53	Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14478-14483.	3.3	157
54	Positive association between biotin and the abundance of root-feeding nematodes. Soil Biology and Biochemistry, 2014, 73, 93-95.	4.2	7

Ηεικκι SetÃæÃ¤

#	Article	IF	CITATIONS
55	The Effects of Urbanization on Runoff Pollutant Concentrations, Loadings and Their Seasonal Patterns Under Cold Climate. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	62
56	Moth herbivory enhances resource turnover in subarctic mountain birch forests?. Ecology, 2013, 94, 267-272.	1.5	37
57	The effects of biochar, wood vinegar and plants on glyphosate leaching and degradation. European Journal of Soil Biology, 2013, 58, 1-7.	1.4	51
58	Does urban vegetation mitigate air pollution in northern conditions?. Environmental Pollution, 2013, 183, 104-112.	3.7	171
59	Soil food web properties explain ecosystem services across European land use systems. Proceedings of the United States of America, 2013, 110, 14296-14301.	3.3	520
60	The fate of lead at abandoned and active shooting ranges in a boreal pine forest. Environmental Toxicology and Chemistry, 2012, 31, 2771-2779.	2.2	16
61	Nitrogen and Carbon Dynamics and the Role of Enchytraeid Worms in Decomposition of L, F and H Layers of Boreal Mor. Water, Air, and Soil Pollution, 2012, 223, 3701-3719.	1.1	12
62	Community composition of soil organisms under different wheat farming systems. Advances in Agroecology, 2012, , 89-111.	0.3	13
63	Environmental fate of polycyclic aromatic hydrocarbons under different plant traits in urban soil as affected by nitrogen deposition. Applied Soil Ecology, 2011, 47, 167-175.	2.1	8
64	Decomposition of labile and recalcitrant litter types under different plant communities in urban soils. Urban Ecosystems, 2011, 14, 59-70.	1.1	31
65	Urban belowground food-web responses to plant community manipulation – Impacts on nutrient dynamics. Landscape and Urban Planning, 2010, 97, 1-10.	3.4	26
66	Do plant species of different resource qualities form dissimilar energy channels below-ground?. Applied Soil Ecology, 2010, 44, 270-278.	2.1	17
67	Defoliation effects on Plantago lanceolata resource allocation and soil decomposers in relation to AM symbiosis and fertilization. Soil Biology and Biochemistry, 2009, 41, 2328-2335.	4.2	19
68	Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry, 2008, 40, 2297-2308.	4.2	457
69	Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. Applied Soil Ecology, 2007, 36, 100-106.	2.1	34
70	Variable impacts of enchytraeid worms and ectomycorrhizal fungi on plant growth in raw humus soil treated with wood ash. Applied Soil Ecology, 2007, 35, 174-183.	2.1	23
71	Decomposition of leaf litter from chitinase transgenic silver birch (Betula pendula) and effects on decomposer populations in a field trial. Applied Soil Ecology, 2006, 32, 338-349.	2.1	33
72	Effects of small-scale habitat fragmentation, habitat corridors and mainland dispersal on soil decomposer organisms. Applied Soil Ecology, 2006, 34, 152-159.	2.1	25

Heikki SetÃ**þ**ä

#	Article	IF	CITATIONS
73	Lead contamination of an old shooting range affecting the local ecosystem — A case study with a holistic approach. Science of the Total Environment, 2006, 369, 99-108.	3.9	46
74	Trophic structure and functional redundancy in soil communities. , 2005, , 236-249.		61
75	Species richness and food web structure of soil decomposer community as affected by the size of habitat fragment and habitat corridors. Global Change Biology, 2005, 11, 1614-1627.	4.2	55
76	Nonparasitic Nematoda provide evidence for a linear response of functionally important soil biota to increasing livestock density. Die Naturwissenschaften, 2005, 92, 314-318.	0.6	14
77	Colonisation of newly established habitats by soil decomposer organisms: the effect of habitat corridors in relation to colonisation distance and habitat size. Applied Soil Ecology, 2005, 28, 67-77.	2.1	20
78	Bacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslands. Ecology Letters, 2004, 8, 80-90.	3.0	103
79	Interactive effects of defoliation and an AM fungus on plants and soil organisms in experimental legume-grass communities. Oikos, 2004, 106, 73-84.	1.2	41
80	Influence of resource quality on the composition of soil decomposer community in fragmented and continuous habitat. Soil Biology and Biochemistry, 2004, 36, 1983-1996.	4.2	33
81	Trophic interactions in changing landscapes: responses of soil food webs. Basic and Applied Ecology, 2004, 5, 495-503.	1.2	100
82	Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia, 2004, 139, 98-107.	0.9	273
83	Do enchytraeid worms and habitat corridors facilitate the colonisation of habitat patches by soil microbes?. Biology and Fertility of Soils, 2004, 39, 200-208.	2.3	30
84	Impacts of chitinase-transformed silver birch on leaf decomposition and soil organisms. European Journal of Soil Biology, 2004, 40, 155-161.	1.4	13
85	Testing the usefulness of habitat corridors in mitigating the negative effects of fragmentation: the soil faunal community as a model system. Applied Soil Ecology, 2004, 25, 267-274.	2.1	25
86	Ecological Linkages Between Aboveground and Belowground Biota. Science, 2004, 304, 1629-1633.	6.0	3,502
87	TOP-DOWN IS BOTTOM-UP: DOES PREDATION IN THE RHIZOSPHERE REGULATE ABOVEGROUND DYNAMICS?. Ecology, 2003, 84, 846-857.	1.5	236
88	Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbance. Soil Biology and Biochemistry, 2002, 34, 1009-1020.	4.2	60
89	Community composition of soil microarthropods of acid forest soils as affected by wood ash application. Pedobiologia, 2002, 46, 108-124.	0.5	41

90 Multitrophic interactions in decomposer food-webs. , 2002, , 223-264.

96

Heikki Setää

#	Article	IF	CITATIONS
91	Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed. Oikos, 2002, 96, 137-149.	1.2	88
92	Sensitivity of ecosystem functioning to changes in trophic structure, functional group composition and species diversity in belowground food webs. Ecological Research, 2002, 17, 207-215.	0.7	54
93	Title is missing!. Plant and Soil, 2002, 246, 31-39.	1.8	10
94	Influence of carbon and nutrient additions on a decomposer food chain and the growth of pine seedlings in microcosms. Applied Soil Ecology, 2001, 17, 189-197.	2.1	13
95	Bacteria and microbial-feeders modify the performance of a decomposer fungus. Soil Biology and Biochemistry, 2001, 33, 1703-1712.	4.2	18
96	Influence of Cognettia sphagnetorum (Enchytraeidae) on birch growth and microbial activity, composition and biomass in soil with or without wood ash. Biology and Fertility of Soils, 2001, 34, 185-195.	2.3	21
97	Influence of decomposer food web structure and nitrogen availability on plant growth. Plant and Soil, 2000, 225, 153-165.	1.8	72
98	Sensitivity of Primary Production to Changes in the Architecture of Belowground Food Webs. Oikos, 1999, 87, 57.	1.2	268
99	Population- and ecosystem-level effects of predation on microbial-feeding nematodes. Oecologia, 1999, 120, 279-286.	0.9	83
100	Influence of Ectomycorrhiza on the Structure of Detrital Food Webs in Pine Rhizosphere. Oikos, 1999, 87, 113.	1.2	27
101	Functional implications of soil fauna diversity in boreal forests. Applied Soil Ecology, 1998, 10, 277-288.	2.1	85
102	NO EVIDENCE OF TROPHIC CASCADES IN AN EXPERIMENTAL MICROBIAL-BASED SOIL FOOD WEB. Ecology, 1998, 79, 153-164.	1.5	195
103	Regulation of decomposer community structure and decomposition processes in herbicide stressed humus soil. Applied Soil Ecology, 1997, 6, 265-274.	2.1	18
104	Influence of body size of soil fauna on litter decomposition and 15N uptake by poplar in a pot trial. Soil Biology and Biochemistry, 1996, 28, 1661-1675.	4.2	99
105	Food Webs and Nutrient Cycling in Soils: Interactions and Positive Feedbacks. , 1996, , 30-38.		38
106	Growth of Birch and Pine Seedlings in Relation to Grazing by Soil Fauna on Ectomycorrhizal Fungi. Ecology, 1995, 76, 1844-1851.	1.5	102
107	Plant colonization of bare peat surface - relative importance of seed availability and soil. Ecography, 1992, 15, 199-204.	2.1	36
108	Soil Fauna Increase Betula Pendula Growth: Laboratory Experiments With Coniferous Forest Floor. Ecology, 1991, 72, 665-671.	1.5	180

#	Article	IF	CITATIONS
109	Plant functional type affects nitrogen dynamics in urban park soils similarly to boreal forest soils. Plant and Soil, 0, , .	1.8	Ο