Yong-Sheng Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899386/publications.pdf

Version: 2024-02-01

4645 5574 30,292 184 82 170 citations h-index g-index papers 189 189 189 17681 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells. Engineering, 2022, 8, 170-180.	6.7	12
2	Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. ACS Energy Letters, 2022, 7, 97-107.	17.4	91
3	Screening Heteroatom Configurations for Reversible Sloping Capacity Promises Highâ€Power Naâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	58
4	Origin of Air-Stability for Transition Metal Oxide Cathodes in Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5338-5345.	8.0	32
5	All-in-One Ionic–Electronic Dual-Carrier Conducting Framework Thickening All-Solid-State Electrode. ACS Energy Letters, 2022, 7, 766-772.	17.4	7
6	Regulated Synthesis of α-NaVOPO ₄ with an Enhanced Conductive Network as a High-Performance Cathode for Aqueous Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6841-6851.	8.0	12
7	Large Scale One-Pot Synthesis of Monodispersed Na ₃ (VOPO ₄) ₂ F Cathode for Na-Ion Batteries. Energy Material Advances, 2022, 2022, .	11.0	16
8	Mg-doped layered oxide cathode for Na-ion batteries. Chinese Physics B, 2022, 31, 068201.	1.4	6
9	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	23.7	44
10	The Role of Hydrothermal Carbonization in Sustainable Sodiumâ€ion Battery Anodes. Advanced Energy Materials, 2022, 12, .	19.5	61
11	A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2110323.	21.0	46
12	Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability. Journal of the American Chemical Society, 2022, 144, 8286-8295.	13.7	112
13	Preferential Extraction of Lithium from Spent Cathodes and the Regeneration of Layered Oxides for Li/Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24255-24264.	8.0	7
14	Achieving high initial Coulombic efficiency for competent Na storage by microstructure tailoring from chiral nematic nanocrystalline cellulose., 2022, 4, 914-923.		13
15	Interfacial engineering to achieve an energy density of over 200 Wh kgâ^'1 in sodium batteries. Nature Energy, 2022, 7, 511-519.	39.5	130
16	Epitaxial Induced Plating Currentâ€Collector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709.	19.5	119
17	Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries. Energy and Environmental Science, 2021, 14, 6381-6393.	30.8	70
18	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	2.0	2

#	Article	IF	Citations
19	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	13.8	71
20	Engineering Solid Electrolyte Interface at Nanoâ€Scale for Highâ€Performance Hard Carbon in Sodiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2100278.	14.9	90
21	Additiveâ€Free Selfâ€Presodiation Strategy for Highâ€Performance Naâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2101475.	14.9	36
22	A Novel NASICONâ€Typed Na ₄ VMn _{0.5} Fe _{0.5} (PO ₄) ₃ Cathode for Highâ€Performance Naâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2100729.	19.5	108
23	Dense Allâ€Electrochemâ€Active Electrodes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2021, 33, e2008723.	21.0	26
24	Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Material Advances, 2021, 2021, .	11.0	57
25	Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nature Communications, 2021, 12, 2848.	12.8	108
26	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie - International Edition, 2021, 60, 17547-17555.	13.8	72
27	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 17688-17696.	2.0	13
28	Amorphous Redox-Rich Polysulfides for Mg Cathodes. Jacs Au, 2021, 1, 1266-1274.	7.9	14
29	Fundamentals, status and promise of sodium-based batteries. Nature Reviews Materials, 2021, 6, 1020-1035.	48.7	496
30	O3-NaFe _(1/3–<i>x</i>) Ni _{1/3} Mn _{1/3} Al <i>_x</i> O ₂ Cathodes with Improved Air Stability for Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33015-33023.	8.0	31
31	Thermal Stability of High Power 26650-Type Cylindrical Na-Ion Batteries. Chinese Physics Letters, 2021, 38, 076501.	3.3	13
32	Recycling Cathodes from Spent Lithium-Ion Batteries Based on the Selective Extraction of Lithium. ACS Sustainable Chemistry and Engineering, 2021, 9, 10196-10204.	6.7	23
33	Disordered carbon anodes for Na-ion batteriesâ€"quo vadis?. Science China Chemistry, 2021, 64, 1679-1692.	8.2	44
34	Lowâ€Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034.	21.0	39
35	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	10.3	63
36	Electronic Conductive Inorganic Cathodes Promising Highâ€Energy Organic Batteries. Advanced Materials, 2021, 33, e2005781.	21.0	12

#	Article	IF	CITATIONS
37	Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021, 13, 1061-1069.	13.6	57
38	Unlocking Sustainable Na-Ion Batteries into Industry. ACS Energy Letters, 2021, 6, 4115-4117.	17.4	76
39	Highâ€Entropy Layered Oxide Cathodes for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 264-269.	13.8	335
40	Flexible Na batteries. InformaÄnÃ-Materiály, 2020, 2, 126-138.	17.3	108
41	Highâ€Entropy Layered Oxide Cathodes for Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 270-275.	2.0	15
42	lodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo ₆ S ₈ Nanosheets for Advanced Multivalent Batteries. ACS Nano, 2020, 14, 1102-1110.	14.6	72
43	Highâ€Voltage Aqueous Naâ€Ion Battery Enabled by Inertâ€Cationâ€Assisted Waterâ€Inâ€Salt Electrolyte. Advan Materials, 2020, 32, e1904427.	ced 21.0	221
44	The Mystery of Electrolyte Concentration: From Superhigh to Ultralow. ACS Energy Letters, 2020, 5, 3633-3636.	17.4	96
45	Ultrastable All-Solid-State Sodium Rechargeable Batteries. ACS Energy Letters, 2020, 5, 2835-2841.	17.4	142
46	Interface Concentratedâ€Confinement Suppressing Cathode Dissolution in Waterâ€inâ€Salt Electrolyte. Advanced Energy Materials, 2020, 10, 2000665.	19.5	70
47	Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 6852-6858.	9.1	25
48	Simplifying and accelerating kinetics enabling fast-charge Al batteries. Journal of Materials Chemistry A, 2020, 8, 23834-23843.	10.3	12
49	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	12.8	226
50	Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370, 708-711.	12.6	616
51	Wearable Bipolar Rechargeable Aluminum Battery. , 2020, 2, 808-813.		19
52	Ultralow-Concentration Electrolyte for Na-Ion Batteries. ACS Energy Letters, 2020, 5, 1156-1158.	17.4	120
53	PEO-NaPF ₆ Blended Polymer Electrolyte for Solid State Sodium Battery. Journal of the Electrochemical Society, 2020, 167, 070523.	2.9	37
54	Constructing Naâ€lon Cathodes via Alkaliâ€Site Substitution. Advanced Functional Materials, 2020, 30, 1910840.	14.9	28

#	Article	IF	CITATIONS
55	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. Journal of the American Chemical Society, 2020, 142, 5742-5750.	13.7	206
56	Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries*. Chinese Physics B, 2020, 29, 048201.	1.4	26
57	Comprehensive Studies on the Hydrothermal Strategy for the Synthesis of Na ₃ (VO _{1â^'} <i>_x</i> PO ₄) ₂ F ₁₊₂ <i>(0 ≤i>x</i> ≤) and their Naâ€Storage Performance. Small Methods, 2019, 3, 1800111.	< 811 p>x< 8	sułos
58	A new Tin-based O3-Na0.9[Ni0.45â^²/2Mn Sn0.55â^²/2]O2 as sodium-ion battery cathode. Journal of Energy Chemistry, 2019, 31, 132-137.	12.9	39
59	Intercalation chemistry of graphite: alkali metal ions and beyond. Chemical Society Reviews, 2019, 48, 4655-4687.	38.1	534
60	Allâ€Celluloseâ€Based Quasiâ€Solidâ€State Sodiumâ€Ion Hybrid Capacitors Enabled by Structural Hierarchy. Advanced Functional Materials, 2019, 29, 1903895.	14.9	75
61	Hard carbons derived from pine nut shells as anode materials for Na-ion batteries*. Chinese Physics B, 2019, 28, 068203.	1.4	10
62	Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) (sub) Cathode for Aqueous Al-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41356-41362.	8.0	93
63	Revealing an Interconnected Interfacial Layer in Solidâ€ S tate Polymer Sodium Batteries. Angewandte Chemie, 2019, 131, 17182-17188.	2.0	7
64	Regulating Pore Structure of Hierarchical Porous Waste Corkâ€Derived Hard Carbon Anode for Enhanced Na Storage Performance. Advanced Energy Materials, 2019, 9, 1902852.	19.5	212
65	2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries. ACS Energy Letters, 2019, 4, 2689-2690.	17.4	109
66	Correlated Migration Invokes Higher Na ⁺ â€ion Conductivity in NaSICONâ€īype Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373.	19.5	162
67	Revealing an Interconnected Interfacial Layer in Solidâ€ S tate Polymer Sodium Batteries. Angewandte Chemie - International Edition, 2019, 58, 17026-17032.	13.8	48
68	Controlled Synthesis of Na ₃ (VOPO ₄) ₂ F Cathodes with an Ultralong Cycling Performance. ACS Applied Energy Materials, 2019, 2, 7474-7482.	5.1	31
69	Tuning the Closed Pore Structure of Hard Carbons with the Highest Na Storage Capacity. ACS Energy Letters, 2019, 4, 2608-2612.	17.4	205
70	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€lon Batteries. Angewandte Chemie, 2019, 131, 4405-4409.	2.0	36
71	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 4361-4365.	13.8	171
72	In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 2019, 4, 1650-1657.	17.4	93

#	Article	lF	Citations
73	Na ₃ V ₂ (PO ₄) ₃ as the Sole Solid Energy Storage Material for Redox Flow Sodiumâ€lon Battery. Advanced Energy Materials, 2019, 9, 1901188.	19.5	38
74	Ni-based cathode materials for Na-ion batteries. Nano Research, 2019, 12, 2018-2030.	10.4	67
75	Sodiumâ€lon Batteries: Hard–Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance (Adv. Funct. Mater. 24/2019). Advanced Functional Materials, 2019, 29, 1970164.	14.9	4
76	Building aqueous K-ion batteries for energy storage. Nature Energy, 2019, 4, 495-503.	39.5	630
77	A New Emerging Technology: Na″on Batteries. Small Methods, 2019, 3, 1900184.	8.6	37
78	A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Materials, 2019, 23, 514-521.	18.0	97
79	Hard–Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance. Advanced Functional Materials, 2019, 29, 1901072.	14.9	191
80	Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. Journal of Materials Chemistry A, 2019, 7, 24857-24867.	10.3	48
81	Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. Journal of Materials Chemistry A, 2019, 7, 27567-27575.	10.3	69
82	High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4001-4010.	8.0	47
83	We Editors Are Authors, Too. ACS Energy Letters, 2019, 4, 249-250.	17.4	2
84	Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707543.	14.9	81
85	Core–Shell Fe _{1–<i>x</i>} S@Na _{2.9} PS _{3.95} Se _{0.05} Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density. ACS Nano, 2018, 12, 2809-2817.	14.6	68
86	An O3â€type Oxide with Low Sodium Content as the Phaseâ€Transitionâ€Free Anode for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 7056-7060.	13.8	87
87	An O3â€type Oxide with Low Sodium Content as the Phaseâ€Transitionâ€Free Anode for Sodiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 7174-7178.	2.0	14
88	NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Metals, 2018, 37, 480-487.	7.1	63
89	Solidâ€State Sodium Batteries. Advanced Energy Materials, 2018, 8, 1703012.	19.5	478
90	3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1702764.	19.5	274

#	Article	IF	Citations
91	Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 2018, 47, 2020-2064.	38.1	452
92	TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Storage Materials, 2018, 12, 216-222.	18.0	129
93	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 2018, 3, 1212-1218.	17.4	321
94	Nanoscaled Na ₃ PS ₄ Solid Electrolyte for All-Solid-State FeS ₂ /Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances. ACS Applied Materials & Diterfaces, 2018, 10, 12300-12304.	8.0	64
95	Advanced Na metal anodes. Journal of Energy Chemistry, 2018, 27, 1584-1596.	12.9	99
96	Integrated Surface Functionalization of Li-Rich Cathode Materials for Li-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41802-41813.	8.0	56
97	Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 20795-20803.	10.3	54
98	Structural Engineering of Multishelled Hollow Carbon Nanostructures for Highâ€Performance Naâ€lon Battery Anode. Advanced Energy Materials, 2018, 8, 1800855.	19.5	121
99	Preâ€Oxidationâ€Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance. Advanced Energy Materials, 2018, 8, 1800108.	19.5	179
100	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341.	12.8	60
101	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	30.8	894
102	Sodium″on Batteries. Advanced Energy Materials, 2018, 8, 1800880.	19.5	56
103	Novel Concentrated Li[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4282-4289.	8.0	62
104	In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33, 45-54.	16.0	205
105	NASICONâ€6tructured Materials for Energy Storage. Advanced Materials, 2017, 29, 1601925.	21.0	394
106	In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO ₂ Cathode in a Working All-Solid-State Battery. Journal of the American Chemical Society, 2017, 139, 4274-4277.	13.7	142
107	Enhanced Structural and Electrochemical Stability of Self-Similar Rice-Shaped SnO ₂ Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 9747-9755.	8.0	47
108	A class of liquid anode for rechargeable batteries with ultralong cycle life. Nature Communications, 2017, 8, 14629.	12.8	71

#	Article	IF	CITATIONS
109	A sodium–aluminum hybrid battery. Journal of Materials Chemistry A, 2017, 5, 6589-6596.	10.3	25
110	Atomic-Scale Structure-Property Relationships in Lithium Ion Battery Electrode Materials. Annual Review of Materials Research, 2017, 47, 175-198.	9.3	23
111	Reversible multi-electron redox chemistry ofÂÏ€-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nature Energy, 2017, 2, .	39.5	486
112	A new Na[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-based polymer electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2017, 5, 7738-7743.	10.3	76
113	Novel Methods for Sodiumâ€ion Battery Materials. Small Methods, 2017, 1, 1600063.	8.6	84
114	Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Materials, 2017, 7, 130-151.	18.0	469
115	Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries. ACS Applied Materials & Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.	8.0	95
116	Atomicâ€Scale Monitoring of Electrode Materials in Lithiumâ€Ion Batteries using In Situ Transmission Electron Microscopy. Advanced Energy Materials, 2017, 7, 1700709.	19.5	53
117	Advanced Nanostructured Anode Materials for Sodiumâ€lon Batteries. Small, 2017, 13, 1701835.	10.0	206
118	"Waterâ€inâ€Salt―Electrolyte Makes Aqueous Sodiumâ€Ion Battery Safe, Green, and Longâ€Lasting. Advance Energy Materials, 2017, 7, 1701189.	ced 19.5	487
119	Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nature Communications, 2017, 8, 15888.	12.8	188
120	A Selfâ€Forming Composite Electrolyte for Solidâ€State Sodium Battery with Ultralong Cycle Life. Advanced Energy Materials, 2017, 7, 1601196.	19.5	231
121	Hard Carbon Microtubes Made from Renewable Cotton as Highâ€Performance Anode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1600659.	19.5	655
122	Improved Cycling Stability of Lithiumâ€Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, 3, 531-536.	3.4	67
123	Single Lithiumâ€lon Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie - International Edition, 2016, 55, 2521-2525.	13.8	411
124	Novel 1.5 V anode materials, ATiOPO4(A = NH4, K, Na), for room-temperature sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7141-7147.	10.3	35
125	Novel Li[(CF ₃ SO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. ACS Applied Materials & Diterfaces, 2016, 8, 29705-29712.	8.0	87
126	A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A, 2016, 4, 15823-15828.	10.3	152

#	Article	IF	Citations
127	Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1741-1745.	3.4	76
128	Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 2016, 5, 191-197.	18.0	239
129	Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32631-32636.	8.0	71
130	Phase Separation of Li ₂ S/S at Nanoscale during Electrochemical Lithiation of the Solidâ€State Lithium–Sulfur Battery Using In Situ TEM. Advanced Energy Materials, 2016, 6, 1600806.	19.5	69
131	A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13046-13052.	10.3	246
132	Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Scientific Reports, 2016, 6, 18978.	3.3	67
133	Batteries: Getting solid. Nature Energy, 2016, 1, .	39.5	295
134	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. Nano Letters, 2016, 16, 7148-7154.	9.1	309
135	Sodiumâ€Deficient O3â€Na _{0.9} [Ni _{0.4} Mn <i>_x</i> Ti _{0.6â~'<i>x</i>}]O ₂ Layeredâ€Oxide Cathode Materials for Sodiumâ€lon Batteries. Particle and Particle Systems Characterization, 2016, 33, 538-544.	2. 3	47
136	Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries. Journal of the Electrochemical Society, 2016, 163, A1776-A1783.	2.9	40
137	Single Lithiumâ€lon Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie, 2016, 128, 2567-2571.	2.0	26
138	Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes. RSC Advances, 2016, 6, 32454-32461.	3.6	90
139	MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 775-780.	10.3	79
140	A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 96-104.	10.3	322
141	A Highâ€Power Symmetric Naâ€Ion Pseudocapacitor. Advanced Functional Materials, 2015, 25, 5778-5785.	14.9	105
142	Superior Naâ€Storage Performance of Lowâ€Temperatureâ€Synthesized Na ₃ (VO _{1â^'<i>x</i>} PO ₄) ₂ F _{1+2<i>x</i>} (0≤i>xàô‰¹) Nanoparticles for Naâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 9911-9916.	13.8	191
143	Alkali″on Storage Behaviour in Spinel Lithium Titanate Electrodes. ChemElectroChem, 2015, 2, 1678-1681.	3.4	5
144	Prototype Sodium″on Batteries Using an Airâ€Stable and Co/Niâ€Free O3‣ayered Metal Oxide Cathode. Advanced Materials, 2015, 27, 6928-6933.	21.0	504

#	Article	IF	CITATIONS
145	Metal–Insulator Transition Induced by Oxygen Vacancies from Electrochemical Reaction in Ionic Liquidâ€Gated Manganite Films. Advanced Materials Interfaces, 2015, 2, 1500407.	3.7	68
146	A Novel High Capacity Positive Electrode Material with Tunnelâ€Type Structure for Aqueous Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1501005.	19.5	161
147	Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries. Electrochimica Acta, 2015, 158, 258-263.	5.2	43
148	Selective adsorption–deposition of gold nanoparticles onto monodispersed hydrothermal carbon spherules: a reduction–deposition coupled mechanism. Journal of Materials Chemistry A, 2015, 3, 1666-1674.	10.3	34
149	Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li–S batteries. Nano Energy, 2015, 13, 467-473.	16.0	76
150	Novel Largeâ€Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1500046.	19.5	96
151	Anti-P2 structured Na0.5NbO2and its negative strain effect. Energy and Environmental Science, 2015, 8, 2753-2759.	30.8	14
152	A spray drying approach for the synthesis of a Na ₂ C ₆ H ₂ O ₄ /CNT nanocomposite anode for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 13193-13197.	10.3	75
153	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	12.8	316
154	P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nature Communications, 2015, 6, 6954.	12.8	426
155	Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Science Advances, 2015, 1, e1500330.	10.3	170
156	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 71-77.	10.3	432
157	Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li ₂ O ₂ for Liâ€O ₂ Batteries. Advanced Energy Materials, 2015, 5, 1400664.	19.5	32
158	Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014, 6, e138-e138.	7.9	213
159	Ambient Lithium–SO ₂ Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie - International Edition, 2014, 53, 2099-2103.	13.8	62
160	Carbon-coated rhombohedral Li ₃ V ₂ (PO ₄) ₃ as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. Journal of Materials Chemistry A, 2014, 2, 20231-20236.	10.3	44
161	Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chinese Physics B, 2014, 23, 118202.	1.4	105
162	Cereusâ€Shaped Mesoporous Rutile TiO ₂ Formed in Ionic Liquid: Synthesis and Liâ€Storage Properties. ChemElectroChem, 2014, 1, 549-553.	3.4	13

#	Article	IF	Citations
163	Atomic Structure and Kinetics of NASICON Na _x V ₂ (PO ₄) ₃ Cathode for Sodiumâ€ion Batteries. Advanced Functional Materials, 2014, 24, 4265-4272.	14.9	323
164	A phase transfer assisted solvo-thermal strategy for the synthesis of REF3 and Ln3+-doped REF3 nano-/microcrystals. Journal of Colloid and Interface Science, 2014, 436, 171-178.	9.4	6
165	Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. Journal of Materials Chemistry A, 2014, 2, 9020.	10.3	41
166	Remarkably Improved Electrode Performance of Bulk MnS by Forming a Solid Solution with FeS – Understanding the Li Storage Mechanism. Advanced Functional Materials, 2014, 24, 5557-5566.	14.9	49
167	A long-life lithium-ion battery with a highly porous TiNb ₂ O ₇ anode for large-scale electrical energy storage. Energy and Environmental Science, 2014, 7, 2220-2226.	30.8	312
168	Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy and Environmental Science, 2013, 6, 2338.	30.8	2,799
169	A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications, 2013, 4, 2365.	12.8	515
170	A Size-Dependent Sodium Storage Mechanism in Li ₄ Ti ₅ O ₁₂ Investigated by a Novel Characterization Technique Combining in Situ X-ray Diffraction and Chemical Sodiation. Nano Letters, 2013, 13, 4721-4727.	9.1	212
171	Highly Ordered Mesoporous Crystalline MoSe ₂ Material with Efficient Visibleâ€Lightâ€Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. Advanced Functional Materials, 2013, 23, 1832-1838.	14.9	285
172	Superior Electrochemical Performance and Storage Mechanism of Na ₃ V ₂ (PO ₄) ₃ Cathode for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 156-160.	19.5	817
173	Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nature Communications, 2013, 4, 1870.	12.8	628
174	Sodium Storage and Transport Properties in Layered Na ₂ Ti ₃ O ₇ for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 1186-1194.	19.5	456
175	Sodium-Ion Batteries: Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3Cathode for Room-Temperature Sodium-Ion Batteries (Adv. Energy Mater. 2/2013). Advanced Energy Materials, 2013, 3, 138-138.	19.5	4
176	The low-temperature (400 \hat{A}° C) coating of few-layer graphene on porous Li4Ti5O12via C28H16Br2 pyrolysis for lithium-ion batteries. RSC Advances, 2012, 2, 1751.	3.6	40
177	Disodium Terephthalate (Na ₂ C ₈ H ₄ O ₄) as High Performance Anode Material for Lowâ€Cost Roomâ€Temperature Sodiumâ€Ion Battery. Advanced Energy Materials, 2012, 2, 962-965.	19.5	498
178	Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 2012, 14, 86-89.	4.7	693
179	Atomic-scale investigation on lithium storage mechanism in TiNb2O7,. Energy and Environmental Science, 2011, 4, 2638.	30.8	256
180	Porous Li ₄ Ti ₅ O ₁₂ Coated with Nâ€Doped Carbon from Ionic Liquids for Liâ€Ion Batteries. Advanced Materials, 2011, 23, 1385-1388.	21.0	742

#	ARTICLE	IF	CITATION
181	Highly Stable Lithium Storage Performance in a Porous Carbon/Silicon Nanocomposite. ChemSusChem, 2010, 3, 231-235.	6.8	31
182	Electrodeposited Aluminum-Doped \hat{l} ±-Fe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ Photoelectrodes: Experiment and Theory. Chemistry of Materials, 2010, 22, 510-517.	6.7	240
183	Hollow Fe-containing carbon fibers with tubular tertiary structure: preparation and Li-storage properties. Journal of Materials Chemistry, 2009, 19, 1616.	6.7	28
184	Screening Heteroatom Configurations for Reversible Sloping Capacity Promises Highâ€Power Naâ€lon Batteries. Angewandte Chemie, 0, , .	2.0	23