Andrzej Garbacz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fire resistance of aluminiumâ€glazed partitions depending on their height. Fire and Materials, 2021, 45, 966-981.	2.0	2
2	Development of Impact-Echo Multitransducer Device for Automated Concrete Homogeneity Assessment. Materials, 2021, 14, 2144.	2.9	2
3	Nanomodification, Hybridization and Temperature Impact on Shear Strength of Basalt Fiber-Reinforced Polymer Bars. Polymers, 2021, 13, 2585.	4.5	10
4	Relation between microstructure, technical properties and neutron radiation shielding efficiency of concrete. Construction and Building Materials, 2020, 235, 117389.	7.2	42
5	Influence of Lowered Temperature on Efficiency of Concrete Repair with Polymer-Cement Repair Mortars. Materials, 2020, 13, 4254.	2.9	5
6	The effect of temperature on the mechanical properties of hybrid FRP bars applicable for the reinforcing of concrete structures. MATEC Web of Conferences, 2020, 322, 01029.	0.2	2
7	The Use of Wavelet Analysis to Improve the Accuracy of Pavement Layer Thickness Estimation Based on Amplitudes of Electromagnetic Waves. Materials, 2020, 13, 3214.	2.9	8
8	Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortars. Materials, 2020, 13, 1033.	2.9	26
9	Influence of Polymer Modification on the Microstructure of Shielding Concrete. Materials, 2020, 13, 498.	2.9	13
10	Mechanical performance of FRP-RC flexural members subjected to fire conditions. Budownictwo I Architektura, 2020, 19, 017-030.	0.3	0
11	State-of-the-Art on Fire Resistance Aspects of FRP Reinforcing Bars. IOP Conference Series: Materials Science and Engineering, 2019, 661, 012081.	0.6	6
12	On Mechanical Characteristics of HFRP Bars with Various Types of Hybridization. , 2018, , 653-658.		7
13	Development of Innovative HFRP Bars. MATEC Web of Conferences, 2018, 196, 04087.	0.2	7
14	On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis. Construction and Building Materials, 2017, 134, 311-323.	7.2	41
15	Predicting Performance of Aluminum - Glass Composite Facade Systems Based on Mechanical Properties of the Connection. Periodica Polytechnica: Civil Engineering, 2017, , .	0.6	2
16	Numerical estimation of concrete beams reinforced with FRP bars. MATEC Web of Conferences, 2016, 86, 02011.	0.2	3
17	WPÅ¥W SUBSTYTUCJI WÅÓKIEN BAZALTOWYCH PRZEZ WÅÓKNA WÄ~GLOWE NA WÅAÅšCIWOÅšCI MECHANI PRÄ~TÓW B/CFRP (HFRP). Journal of Civil Engineering, Environment and Architecture, 2016, , .	ICZNE 0.0	2
10	Application of stress based NDT methods for concrete repair bond quality control. Bulletin of the	0.8	10

Polish Academy of Sciences: Technical Sciences, 2015, 63, 77-85.

0.8 10

ANDRZEJ GARBACZ

#	Article	IF	CITATIONS
19	Application of Non-Destructive Methods for Quality Control of Concrete Repair Efficiency. Advanced Materials Research, 2015, 1129, 28-38.	0.3	1
20	Properties of Cement Mortars Modified with Ceramic Waste Fillers. Procedia Engineering, 2015, 108, 681-687.	1.2	38
21	Mortars with Phase Change Materials - Part I: Physical and Mechanical Characterization. Key Engineering Materials, 2014, 634, 22-32.	0.4	14
22	Effects of limestone fillers on surface free energy and electrical conductivity of the interstitial solution of cement mixes. Cement and Concrete Composites, 2014, 45, 111-116.	10.7	36
23	Near-to-surface properties affecting bond strength in concrete repair. Cement and Concrete Composites, 2014, 46, 73-80.	10.7	133
24	Effect of Misalignment on Pulloff Test Results: Numerical and Experimental Assessments. ACI Materials Journal, 2014, 111, .	0.2	3
25	Investigation on Concrete Beams Reinforced with Basalt Rebars as an Effective Alternative of Conventional R/C Structures. Procedia Engineering, 2013, 57, 1183-1191.	1.2	84
26	Concrete-like polymer composites with fly ashes – Comparative study. Construction and Building Materials, 2013, 38, 689-699.	7.2	71
27	Effect of Introducing Recycled Polymer Aggregate on the Properties of C-PC Composites. Advanced Materials Research, 2013, 687, 520-526.	0.3	3
28	UIR-Scanner Potential to Defect Detection in Concrete. Advanced Materials Research, 2013, 687, 359-365.	0.3	8
29	A surface engineering approach applicable to concrete repair engineering. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61, 73-84.	0.8	23
30	Saturation level of the superficial zone of concrete and adhesion of repair systems. Construction and Building Materials, 2011, 25, 2488-2494.	7.2	39
31	Surfology: concrete surface evaluation prior to repair. WIT Transactions on Engineering Sciences, 2009, , .	0.0	5
32	Modeling of Stress Wave Propagation in Repair Systems Tested with Impact-Echo Method. , 2006, , 303-314.		4
33	On the ultrasonic assessment of adhesion between polymer coating and concrete substrate. Cement and Concrete Composites, 2006, 28, 360-369.	10.7	43
34	Characterization of concrete surface roughness and its relation to adhesion in repair systems. Materials Characterization, 2006, 56, 281-289.	4.4	83
35	Analysis of stress wave propagation in repair systems using wavelet approach. , 2006, , .		4
36	Effect of concrete surface treatment on adhesion in repair systems. Magazine of Concrete Research, 2005, 57, 49-60.	2.0	3

ANDRZEJ GARBACZ

#	Article	IF	CITATIONS
37	On the characterization of polymer concrete fracture surface. Cement and Concrete Composites, 2001, 23, 399-409.	10.7	32
38	The grain boundary character distribution effect on the flow stress of polycrystals: The influence of crystal lattice texture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 205, 127-132.	5.6	26
39	On the possible correlation between grain size distribution and distribution of CSL boundaries in polycrystals. Acta Metallurgica Et Materialia, 1995, 43, 1541-1547.	1.8	16
40	Texture evolution during tensile deformation of an austenitic stainless steel and its effect on the distribution of CSL boundaries. Scripta Metallurgica Et Materialia, 1995, 33, 515-519.	1.0	3
41	Correlation between diffusitity of grain boundaries and distribution of coincidence site lattice boundaries in polycrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 172, 137-144.	5.6	3
42	The relationship between texture and CSL boundaries distribution in polycrystalline materials—I. The grain boundary misorientation distribution in random polycrystal. Acta Metallurgica Et Materialia, 1993, 41, 469-473.	1.8	45
43	The relationship between texture and CSL boundaries distribution in polycrystalline materials—II. Analysis of the relationship between texture and coincidence grain boundary distribution. Acta Metallurgica Et Materialia, 1993, 41, 475-483.	1.8	47
44	The crystal texture effect on the characteristic of grain boundaries in polycrystals: Individual boundaries and three-fold edges. Scripta Metallurgica Et Materialia, 1993, 29, 1365-1370.	1.0	15
45	Modelling of CSL boundaries distribution in polycrystals. Scripta Metallurgica, 1989, 23, 1369-1374.	1.2	61
46	Mechanical properties of copper within the temperature range of EGBD spreading. Scripta Metallurgica, 1986, 20, 873-874.	1.2	1
47	A model of the interaction between a dislocation and a sliding grain boundary. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1985, 52, 689-697.	0.6	7
48	Mortars with Phase Change Materials - Part II: Durability Evaluation. Key Engineering Materials, 0, 634, 33-45.	0.4	3
49	BFRP Bars as an Alternative Reinforcement of Concrete Structures - Compatibility and Adhesion Issues. Advanced Materials Research, 0, 1129, 233-241.	0.3	14
50	Sustainable Mortars with Incorporation of Microencapsulated Phase Change Materials. Advanced Materials Research, 0, 1129, 621-628.	0.3	1