Johnson Mak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899252/publications.pdf

Version: 2024-02-01

		81743	91712
95	5,191	39	69
papers	citations	h-index	g-index
100		100	
100	100	100	5335
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Complement Receptor 3 Mediates HIV-1 Transcytosis across an Intact Cervical Epithelial Cell Barrier: New Insight into HIV Transmission in Women. MBio, 2022, 13, e0217721.	1.8	2
2	Structural maturation of the HIV-1 RNA 5' untranslated region by Pr55 ^{Gag} and its maturation products. RNA Biology, 2022, 19, 191-205.	1.5	6
3	Host glycocalyx captures HIV proximal to the cell surface via oligomannose-GlcNAc glycan-glycan interactions to support viral entry. Cell Reports, 2022, 38, 110296.	2.9	12
4	Calcium Contributes to Polarized Targeting of HIV Assembly Machinery by Regulating Complex Stability. Jacs Au, 2022, 2, 522-530.	3.6	0
5	Antibodies to neutralising epitopes synergistically block the interaction of the receptorâ€binding domain of SARSâ€CoVâ€2 to ACE 2. Clinical and Translational Immunology, 2021, 10, e1260.	1.7	13
6	Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2–ACE2 Receptor Interactions. MBio, 2021, 12, .	1.8	47
7	Incoming HIV virion-derived Gag Spacer Peptide 2 (p1) is a target of effective CD8+ TÂcell antiviral responses. Cell Reports, 2021, 35, 109103.	2.9	4
8	Full assembly of HIV-1 particles requires assistance of the membrane curvature factor IRSp53. ELife, 2021, 10, .	2.8	23
9	The KT Jeang Retrovirology Prize 2020: call for nominations. Retrovirology, 2020, 17, 1.	0.9	4
10	A trip down memory lane with Retrovirology. Retrovirology, 2019, 16, 22.	0.9	0
11	HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly. Science Advances, 2019, 5, eaaw8651.	4.7	59
12	Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation. Journal of Structural Biology, 2018, 203, 94-101.	1.3	37
13	Recent advances in retroviruses via cryo-electron microscopy. Retrovirology, 2018, 15, 23.	0.9	5
14	Defining the distinct, intrinsic properties of the novel type I interferon, IFNϵ. Journal of Biological Chemistry, 2018, 293, 3168-3179.	1.6	32
15	RNA Structureâ€"A Neglected Puppet Master for the Evolution of Virus and Host Immunity. Frontiers in Immunology, 2018, 9, 2097.	2.2	41
16	Intrastructural Help: Harnessing T Helper Cells Induced by Licensed Vaccines for Improvement of HIV Env Antibody Responses to Virus-Like Particle Vaccines. Journal of Virology, 2018, 92, .	1.5	26
17	The C-terminal p6 domain of the HIV-1 Pr55 ^{Gag} precursor is required for specific binding to the genomic RNA. RNA Biology, 2018, 15, 923-936.	1.5	37
18	Interferon epsilon promotes HIV restriction at multiple steps of viral replication. Immunology and Cell Biology, 2017, 95, 478-483.	1.0	33

#	Article	IF	Citations
19	Plasma Protein Binding Structure–Activity Relationships Related to the N-Terminus of Daptomycin. ACS Infectious Diseases, 2017, 3, 249-258.	1.8	20
20	Professor Mark Wainberg. Retrovirology, 2017, 14, 30.	0.9	1
21	HIV-1 Pr55 ^{Gag} binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biology, 2017, 14, 90-103.	1.5	55
22	The thermodynamics of Pr55Gag-RNA interaction regulate the assembly of HIV. PLoS Pathogens, 2017, 13, e1006221.	2.1	33
23	HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells. Viruses, 2016, 8, 118.	1.5	9
24	Estimating the in-vivo HIV template switching and recombination rate. Aids, 2016, 30, 185-192.	1.0	21
25	Self assembly of HIV-1 Gag protein on lipid membranes generates PI(4,5)P2/Cholesterol nanoclusters. Scientific Reports, 2016, 6, 39332.	1.6	60
26	HIV integration and the establishment of latency in CCL19-treated resting CD4+ T cells require activation of NF- \hat{I}^0 B. Retrovirology, 2016, 13, 49.	0.9	25
27	Mutational interference mapping experiment (MIME) for studying RNA structure and function. Nature Methods, 2015, 12, 866-872.	9.0	63
28	A general method to eliminate laboratory induced recombinants during massive, parallel sequencing of cDNA library. Virology Journal, 2015, 12, 55.	1.4	14
29	Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry. Virology, 2015, 486, 121-133.	1.1	13
30	Blocking HIVâ€1 transmission in the female reproductive tract: from microbicide development to exploring local antiviral responses. Clinical and Translational Immunology, 2015, 4, e43.	1.7	8
31	Properties of HIV-1 associated cholesterol in addition to raft formation are important for virus infection. Virus Research, 2015, 210, 18-21.	1.1	8
32	Expression and purification of soluble recombinant full length HIV-1 Pr55Gag protein in Escherichia coli. Protein Expression and Purification, 2014, 100, 10-18.	0.6	24
33	Intracellular Dynamics of HIV Infection. Journal of Virology, 2014, 88, 1113-1124.	1.5	18
34	Specific recognition of the HIV-1 genomic RNA by the Gag precursor. Nature Communications, 2014, 5, 4304.	5.8	103
35	Fifteen to Twenty Percent of HIV Substitution Mutations Are Associated with Recombination. Journal of Virology, 2014, 88, 3837-3849.	1.5	31
36	Identifying Recombination Hot Spots in the HIV-1 Genome. Journal of Virology, 2014, 88, 2891-2902.	1.5	45

#	Article	lF	CITATIONS
37	Visualising single molecules of HIV-1 and miRNA nucleic acids. BMC Cell Biology, 2013, 14, 21.	3.0	3
38	Improved quantification of HIV-1-infected CD4+ T cells using an optimised method of intracellular HIV-1 gag p24 antigen detection. Journal of Immunological Methods, 2013, 391, 174-178.	0.6	26
39	HIV-1 Infection of T Cells and Macrophages Are Differentially Modulated by Virion-Associated Hck: A Nef-Dependent Phenomenon. Viruses, 2013, 5, 2235-2252.	1.5	5
40	Allosteric Modulation of the HIV-1 gp120-gp41 Association Site by Adjacent gp120 Variable Region 1 (V1) N-Glycans Linked to Neutralization Sensitivity. PLoS Pathogens, 2013, 9, e1003218.	2.1	12
41	The origin of genetic diversity in HIV-1. Virus Research, 2012, 169, 415-429.	1.1	110
42	HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection. Virology Journal, 2012, 9, 84.	1.4	45
43	Labeling of Multiple HIV-1 Proteins with the Biarsenical-Tetracysteine System. PLoS ONE, 2011, 6, e17016.	1.1	48
44	HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood, 2011, 118, 298-308.	0.6	102
45	Early Events of HIV-1 Infection: Can Signaling be the Next Therapeutic Target?. Journal of Neurolmmune Pharmacology, 2011, 6, 269-283.	2.1	9
46	8-Modified-2′-Deoxyadenosine Analogues Induce Delayed Polymerization Arrest during HIV-1 Reverse Transcription. PLoS ONE, 2011, 6, e27456.	1.1	8
47	Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cellular Microbiology, 2010, 12, 372-385.	1.1	382
48	Establishment of HIV-1 latency in resting CD4 ⁺ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16934-16939.	3.3	218
49	X4 and R5 HIV-1 Have Distinct Post-entry Requirements for Uracil DNA Glycosylase during Infection of Primary Cells. Journal of Biological Chemistry, 2010, 285, 18603-18614.	1.6	27
50	Accurately Measuring Recombination between Closely Related HIV-1 Genomes. PLoS Computational Biology, 2010, 6, e1000766.	1.5	51
51	Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene, 2010, 469, 45-51.	1.0	90
52	The A-rich RNA sequences of HIV-1 pol are important for the synthesis of viral cDNA. Nucleic Acids Research, 2009, 37, 945-956.	6.5	31
53	An Antiviral Response Directed by PKR Phosphorylation of the RNA Helicase A. PLoS Pathogens, 2009, 5, e1000311.	2.1	54
54	Primary T-lymphocytes rescue the replication of HIV-1 DIS RNA mutants in part by facilitating reverse transcription. Nucleic Acids Research, 2008, 36, 1578-1588.	6.5	24

#	Article	IF	CITATIONS
55	Alteration of the Proline at Position 7 of the HIV-1 Spacer Peptide p1 Suppresses Viral Infectivity in a Strain Dependent Manner. Current HIV Research, 2007, 5, 69-78.	0.2	6
56	Lipid Membrane; A Novel Target for Viral and Bacterial Pathogens. Current Drug Targets, 2006, 7, 1615-1621.	1.0	31
57	Potent Nonnucleoside Reverse Transcriptase Inhibitors Target HIV-1 Gag-Pol. PLoS Pathogens, 2006, 2, e119.	2.1	95
58	Innate Immunity and Intracellular Trafficking: Insights for Novel Anti- HIV-1 Therapeutics. Current Pharmacogenomics and Personalized Medicine: the International Journal for Expert Reviews in Pharmacogenomics, 2005, 3, 97-117.	0.3	4
59	Analysis of the Contribution of Reverse Transcriptase and Integrase Proteins to Retroviral RNA Dimer Conformation. Journal of Virology, 2005, 79, 6338-6348.	1.5	17
60	The Packaging and Maturation of the HIV-1 Pol Proteins. Current HIV Research, 2005, 3, 73-85.	0.2	55
61	Mutations That Abrogate Human Immunodeficiency Virus Type 1 Reverse Transcriptase Dimerization Affect Maturation of the Reverse Transcriptase Heterodimer. Journal of Virology, 2005, 79, 10247-10257.	1.5	54
62	RNA interference: more than a research tool in the vertebrates' adaptive immunity. Retrovirology, 2005, 2, 35.	0.9	9
63	Nef Binds p6* in GagPol during Replication of Human Immunodeficiency Virus Type 1. Journal of Virology, 2004, 78, 5311-5323.	1.5	29
64	The Raft-Promoting Property of Virion-Associated Cholesterol, but Not the Presence of Virion-Associated Brij 98 Rafts, Is a Determinant of Human Immunodeficiency Virus Type 1 Infectivity. Journal of Virology, 2004, 78, 10556-10565.	1.5	59
65	Dimerization of retroviral RNA genomes: an inseparable pair. Nature Reviews Microbiology, 2004, 2, 461-472.	13.6	257
66	Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. Journal of Clinical Virology, 2003, 26, 247-263.	1.6	104
67	The Dimer Initiation Sequence Stem-Loop of Human Immunodeficiency Virus Type 1 Is Dispensable for Viral Replication in Peripheral Blood Mononuclear Cells. Journal of Virology, 2003, 77, 8329-8335.	1.5	61
68	Human Immunodeficiency Virus Type 1 Protease Regulation of Tat Activity Is Essential for Efficient Reverse Transcription and Replication. Journal of Virology, 2003, 77, 9912-9921.	1.5	29
69	HIV-1 Down-Modulates Î ³ Signaling Chain of FcÎ ³ R in Human Macrophages: A Possible Mechanism for Inhibition of Phagocytosis. Journal of Immunology, 2002, 168, 2895-2903.	0.4	79
70	The Conformation of the Mature Dimeric Human Immunodeficiency Virus Type 1 RNA Genome Requires Packaging of Pol Protein. Journal of Virology, 2002, 76, 4331-4340.	1.5	43
71	Overexpression and Incorporation of GagPol Precursor Does Not Impede Packaging of HIV-1 tRNA ^{<i>Lys3</i>} but Promotes Intracellular Budding of Virus-Like Particles. Journal of Biomedical Science, 2002, 9, 697-705.	2.6	5
72	Proline Residues within Spacer Peptide p1 Are Important for Human Immunodeficiency Virus Type 1 Infectivity, Protein Processing, and Genomic RNA Dimer Stability. Journal of Virology, 2002, 76, 11245-11253.	1.5	40

#	Article	IF	CITATIONS
73	Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. Aids, 2002, 16, 2253-2261.	1.0	121
74	Overexpression and incorporation of GagPol precursor does not impede packaging of HIV-1 tRNA Lys3 but promotes intracellular budding of virus-like particles. Journal of Biomedical Science, 2002, 9, 697-705.	2.6	9
75	Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. Journal of Clinical Virology, 2001, 22, 217-227.	1.6	248
76	nef-deleted HIV-1 inhibits phagocytosis by monocyte-derived macrophages in vitro but not by peripheral blood monocytes in vivo. Aids, 2001, 15, 945-955.	1.0	24
77	Proteolytic Processing of the P2/Nucleocapsid Cleavage Site Is Critical for Human Immunodeficiency Virus Type 1 RNA Dimer Maturation. Journal of Virology, 2001, 75, 9156-9164.	1.5	80
78	Gag-Pol Supplied in trans Is Efficiently Packaged and Supports Viral Function in Human Immunodeficiency Virus Type 1. Journal of Virology, 2001, 75, 6835-6840.	1.5	27
79	Maintenance of the Gag/Gag-Pol Ratio Is Important for Human Immunodeficiency Virus Type 1 RNA Dimerization and Viral Infectivity. Journal of Virology, 2001, 75, 1834-1841.	1.5	205
80	Granulocyte-macrophage colony-stimulating factor inhibits HIV-1 replication in monocyte-derived macrophages. Aids, 2000, 14, 1739-1748.	1.0	45
81	Granulocyteâ€Macrophage Colonyâ€Stimulating Factor Augments Phagocytosis ofMycobacterium aviumComplex by Human Immunodeficiency Virus Type 1–Infected Monocytes/Macrophages In Vitro and In Vivo. Journal of Infectious Diseases, 2000, 181, 390-394.	1.9	64
82	Effect of Insulin-Like Growth Factor I on HIV Type 1 Long Terminal Repeat-Driven Chloramphenicol Acetyltransferase Expression. AIDS Research and Human Retroviruses, 1999, 15, 829-836.	0.5	4
83	Effects of mutations in Pr160gag-pol upon tRNALys3 and Pr160gag-pol incorporation into HIV-1. Journal of Molecular Biology, 1997, 265, 419-431.	2.0	70
84	Primer tRNAs for reverse transcription. Journal of Virology, 1997, 71, 8087-8095.	1.5	204
85	Mutations in the kissing-loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. Journal of Virology, 1997, 71, 3397-3406.	1.5	154
86	Multiple Forms of tRNALys3in HIV-1. Biochemical and Biophysical Research Communications, 1996, 227, 530-540.	1.0	9
87	Effects of modifying the tRNA(3Lys) anticodon on the initiation of human immunodeficiency virus type 1 reverse transcription. Journal of Virology, 1996, 70, 4700-4706.	1.5	56
88	DNA found in human immunodeficiency virus type 1 particles may not be required for infectivity. Journal of General Virology, 1994, 75, 1605-1613.	1.3	40
89	Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication. Journal of Virology, 1994, 68, 6198-6206.	1.5	134
90	Incorporation of excess wild-type and mutant tRNA(3Lys) into human immunodeficiency virus type 1. Journal of Virology, 1994, 68, 7676-7683.	1.5	82

#	Article	IF	CITATIONS
91	Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. Journal of Virology, 1994, 68, 2065-2072.	1.5	193
92	Reverse transcriptase is an important factor for the primer tRNA selection in HIV-1. Leukemia, 1994, 8 Suppl 1, S149-51.	3.3	13
93	Mature reverse transcriptase (p66/p51) is responsible for low levels of viral DNA found in human immunodeficiency virus type 1 (HIV-1). Leukemia, 1994, 8 Suppl 1, S175-8.	3.3	3
94	Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1. Journal of Virology, 1993, 67, 3246-3253.	1.5	205
95	Variable tRNA content in HIV-1IIIB. Biochemical and Biophysical Research Communications, 1992, 185, 1005-1015.	1.0	44