RamÃ³n Collazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899169/publications.pdf Version: 2024-02-01

RAMÃ3NI COLLAZO

#	Article	IF	CITATIONS
1	Progress on nâ€ŧype doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2031-2033.	0.8	153
2	On the origin of the 265 nm absorption band in AlN bulk crystals. Applied Physics Letters, 2012, 100, .	1.5	137
3	Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Applied Physics Letters, 2018, 112, .	1.5	107
4	Lasing and longitudinal cavity modes in photo-pumped deep ultraviolet AlGaN heterostructures. Applied Physics Letters, 2013, 102, .	1.5	104
5	On compensation in Si-doped AlN. Applied Physics Letters, 2018, 112, .	1.5	97
6	Atomically Thin MoS ₂ Narrowband and Broadband Light Superabsorbers. ACS Nano, 2016, 10, 7493-7499.	7.3	82
7	Vacancy compensation and related donor-acceptor pair recombination in bulk AlN. Applied Physics Letters, 2013, 103, .	1.5	80
8	The effect of polarity and surface states on the Fermi level at III-nitride surfaces. Journal of Applied Physics, 2014, 116, .	1.1	75
9	Polarity control and growth of lateral polarity structures in AlN. Applied Physics Letters, 2013, 102, .	1.5	60
10	The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN. Applied Physics Letters, 2014, 104, .	1.5	59
11	Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates. Journal of Applied Physics, 2014, 115, .	1.1	56
12	Strain in Si doped GaN and the Fermi level effect. Applied Physics Letters, 2011, 98, 202101.	1.5	51
13	Fermi level control of compensating point defects during metalorganic chemical vapor deposition growth of Si-doped AlGaN. Applied Physics Letters, 2014, 105, 222101.	1.5	47
14	Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN. Journal of Applied Physics, 2017, 122, .	1.1	47
15	Temperature dependent photoluminescence of lateral polarity junctions of metal organic chemical vapor deposition grown GaN. Journal of Applied Physics, 2011, 110, .	1.1	45
16	Ge doped GaN with controllable high carrier concentration for plasmonic applications. Applied Physics Letters, 2013, 103, .	1.5	45
17	Defect-free Ni/GaN Schottky barrier behavior with high temperature stability. Applied Physics Letters, 2017, 110, .	1.5	38
18	Characterization of dislocation arrays in AlN single crystals grown by PVT. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1545-1547.	0.8	37

#	Article	IF	CITATIONS
19	Ni/Au Schottky diodes on Al _x Ga _{1â€x} N (0.7<x<1) grown on AlN single crystal substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2407-2409.	0.8	37
20	Optical identification of silicon as a shallow donor in MOVPE grown homoepitaxial AlN. Physica Status Solidi (B): Basic Research, 2012, 249, 511-515.	0.7	34
21	Structure of Ultrathin Native Oxides on III–Nitride Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 10607-10611.	4.0	34
22	The role of chemical potential in compensation control in Si:AlGaN. Journal of Applied Physics, 2020, 127, .	1.1	34
23	High gain, large area, and solar blind avalanche photodiodes based on Al-rich AlGaN grown on AlN substrates. Applied Physics Letters, 2020, 116, .	1.5	33
24	Schottky contact formation on polar and non-polar AlN. Journal of Applied Physics, 2014, 116, .	1.1	32
25	X-ray characterization of composition and relaxation of AlxGa1â^'xN(â‰釋â‰聲) layers grown on GaN/sapphire templates by low pressure organometallic vapor phase epitaxy. Journal of Applied Physics, 2010, 108, .	1.1	30
26	Homoepitaxial AlN thin films deposited on m-plane (11Â ⁻ 00) AlN substrates by metalorganic chemical vapor deposition. Journal of Applied Physics, 2014, 116, 133517.	1.1	30
27	Sapphire decomposition and inversion domains in N-polar aluminum nitride. Applied Physics Letters, 2014, 104, .	1.5	29
28	Persistent Photoconductivity, Nanoscale Topography, and Chemical Functionalization Can Collectively Influence the Behavior of PC12 Cells on Wide Bandgap Semiconductor Surfaces. Small, 2017, 13, 1700481.	5.2	29
29	Recovery kinetics in high temperature annealed AlN heteroepitaxial films. Journal of Applied Physics, 2020, 127, .	1.1	27
30	The influence of point defects on the thermal conductivity of AlN crystals. Journal of Applied Physics, 2018, 123, 185107.	1.1	26
31	Fermi Level Control of Point Defects During Growth of Mg-Doped GaN. Journal of Electronic Materials, 2013, 42, 815-819.	1.0	25
32	Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. Journal of Applied Physics, 2018, 124, .	1.1	25
33	Quasi-phase-matched second harmonic generation of UV light using AlN waveguides. Applied Physics Letters, 2019, 114, .	1.5	25
34	Status of the growth and fabrication of AlGaN-based UV laser diodes for near and mid-UV wavelength. Journal of Materials Research, 2021, 36, 4638-4664.	1.2	25
35	Sharp bound and free exciton lines from homoepitaxial AlN. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1520-1522.	0.8	24
36	Impact of gallium supersaturation on the growth of Nâ€polar GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2078-2080.	0.8	24

RamÃ³n Collazo

#	Article	IF	CITATIONS
37	Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors. Acta Biomaterialia, 2014, 10, 2455-2462.	4.1	24
38	High free carrier concentration in p-GaN grown on AlN substrates. Applied Physics Letters, 2017, 111, .	1.5	22
39	A thermodynamic supersaturation model for the growth of aluminum gallium nitride by metalorganic chemical vapor deposition. Journal of Applied Physics, 2018, 124, .	1.1	21
40	Exciton transitions and oxygen as a donor in <i>m</i> -plane AlN homoepitaxial films. Journal of Applied Physics, 2014, 115, .	1.1	20
41	Noninvasive Stimulation of Neurotypic Cells Using Persistent Photoconductivity of Gallium Nitride. ACS Omega, 2018, 3, 615-621.	1.6	20
42	Implementation of the GaN lateral polarity junction in a MESFET utilizing polar doping selectivity. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 45-48.	0.8	19
43	Design of AlGaN-based quantum structures for low threshold UVC lasers. Journal of Applied Physics, 2019, 126, 223101.	1.1	19
44	The effect of illumination power density on carbon defect configuration in silicon doped GaN. Journal of Applied Physics, 2016, 120, .	1.1	17
45	On Ni/Au Alloyed Contacts to Mg-Doped GaN. Journal of Electronic Materials, 2018, 47, 305-311.	1.0	17
46	Growth and characterization of Al _{<i>x</i>} Ga _{1â^'<i>x</i>} N lateral polarity structures. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1039-1042.	0.8	15
47	Nanoscale topography, semiconductor polarity and surface functionalization: additive and cooperative effects on PC12 cell behavior. RSC Advances, 2016, 6, 97873-97881.	1.7	15
48	Complexes and compensation in degenerately donor doped GaN. Applied Physics Letters, 2020, 117, .	1.5	15
49	Substrate Modification during Chemical Vapor Deposition of hBN on Sapphire. ACS Applied Materials & Interfaces, 2021, 13, 54516-54526.	4.0	15
50	Defect quasi Fermi level control-based CN reduction in GaN: Evidence for the role of minority carriers. Applied Physics Letters, 2017, 111, 152101.	1.5	14
51	The role of transient surface morphology on composition control in AlGaN layers and wells. Applied Physics Letters, 2019, 114, .	1.5	14
52	Observation of carrier concentration dependent spintronic terahertz emission from <i>n</i> -GaN/NiFe heterostructures. Applied Physics Letters, 2020, 117, .	1.5	14
53	The nature of the DX state in Ge-doped AlGaN. Applied Physics Letters, 2020, 116, .	1.5	14
54	Self-compensation in heavily Ge doped AlGaN: A comparison to Si doping. Applied Physics Letters, 2021, 118, .	1.5	14

#	Article	IF	CITATIONS
55	Epitaxial calcium oxide films deposited on gallium nitride surfaces. Journal of Vacuum Science & Technology B, 2007, 25, 1029.	1.3	13
56	Critical examination of growth rate for magnesium oxide (MgO) thin films deposited by molecular beam epitaxy with a molecular oxygen flux. Journal of Materials Research, 2010, 25, 670-679.	1.2	11
57	Properties of AlN based lateral polarity structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 261-264.	0.8	11
58	Optical signatures of silicon and oxygen related DX centers in AlN. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600749.	0.8	10
59	Second-Harmonic Generation of Blue Light in GaN Waveguides. Applied Sciences (Switzerland), 2018, 8, 1218.	1.3	10
60	Defect chemistry of nano-grained barium titanate films. Journal of Materials Science, 2008, 43, 38-42.	1.7	9
61	Surface preparation of non-polar single-crystalline AlN substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 454-457.	0.8	9
62	Smooth cubic commensurate oxides on gallium nitride. Journal of Applied Physics, 2014, 115, .	1.1	9
63	A conduction model for contacts to Si-doped AlGaN grown on sapphire and single-crystalline AlN. Journal of Applied Physics, 2015, 117, .	1.1	9
64	Chemical treatment effects on Schottky contacts to metalorganic chemical vapor deposited n-type N-polar GaN. Journal of Applied Physics, 2020, 128, 064501.	1.1	9
65	Pinning of energy transitions of defects, complexes, and surface states in AlGaN alloys. Applied Physics Letters, 2020, 116, .	1.5	9
66	Largeâ€Area, Solarâ€Blind, Subâ€250 nm Detection AlGaN Avalanche Photodiodes Grown on AlN Substrates. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	9
67	Growth of highly resistive Ga-polar GaN by LP-MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2260-2263.	0.8	8
68	Fabrication of a GaN p/n lateral polarity junction by polar doping selectivity. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1977-1979.	0.8	8
69	GaN lateral polar junction arrays with 3D control of doping by supersaturation modulated growth: A path toward III-nitride superjunctions. Journal of Applied Physics, 2022, 131, 015703.	1.1	8
70	Optical properties of InN grown on templates with controlled surface polarities. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2351-2354.	0.8	7
71	Long-term stability assessment of AlGaN/GaN field effect transistors modified with peptides: Device characteristics vs. surface properties. AIP Advances, 2015, 5, 097102.	0.6	7
72	Improvement in detection limit for time-of-flight SIMS analysis of dopants in GaN structures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 03F102.	0.6	7

#	Article	IF	CITATIONS
73	Variably doped nanostructured gallium nitride surfaces can serve as biointerfaces for neurotypic PC12 cells and alter their behavior. RSC Advances, 2018, 8, 36722-36730.	1.7	7
74	Impact of impurity-based phonon resonant scattering on thermal conductivity of single crystalline GaN. Applied Physics Letters, 2020, 117, 082101.	1.5	7
75	Polarity characterization by anomalous x-ray dispersion of ZnO films and GaN lateral polar structures. Journal of Applied Physics, 2014, 115, 044912.	1.1	6
76	Plasma enhanced chemical vapor deposition of SiO2and SiNxon AlGaN: Band offsets and interface studies as a function of Al composition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 061101.	0.9	6
77	Weak localization and dimensional crossover in compositionally graded AlxGa1â^'xN. Applied Physics Letters, 2021, 118, .	1.5	6
78	Tuning Microbial Activity via Programmatic Alteration of Cell/Substrate Interfaces. Advanced Materials, 2021, 33, e2004655.	11.1	6
79	(Invited) A Path Toward Vertical GaN Superjunction Devices. ECS Transactions, 2020, 98, 69-79.	0.3	6
80	Bulk and Surface Electronic Properties of Inorganic Materials: Tools to Guide Cellular Behavior. Small Methods, 2018, 2, 1800016.	4.6	5
81	Characterization of Pseudomonas aeruginosa Films on Different Inorganic Surfaces before and after UV Light Exposure. Langmuir, 2018, 34, 10806-10815.	1.6	5
82	Behavior of <i>E. coli</i> with Variable Surface Morphology Changes on Charged Semiconductor Interfaces. ACS Applied Bio Materials, 2019, 2, 4044-4051.	2.3	5
83	On the Ge shallow-to-deep level transition in Al-rich AlGaN. Journal of Applied Physics, 2021, 130, .	1.1	5
84	Vacancy defects in UVâ€ŧransparent HVPEâ€AlN. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 405-407.	0.8	4
85	Native oxide reconstructions on AlN and GaN (0001) surfaces. Journal of Applied Physics, 2021, 129, .	1.1	4
86	Polarity Control of GaN Films Grown by Metal Organic Chemical Vapor Deposition on (0001) Sapphire Substrates. Materials Research Society Symposia Proceedings, 2004, 831, 25.	0.1	3
87	Growth of Large AlN Single Crystals Along the [0001] Direction. Materials Research Society Symposia Proceedings, 2005, 892, 448.	0.1	3
88	Lateral epitaxial overgrowth of nitrogen polar GaN on smooth nitrogen polar GaN templates by metalorganic chemical vapor deposition. Journal of Applied Physics, 2012, 112, .	1.1	3
89	Status and challenges in deep UV semiconductor lasers. , 2015, , .		3
90	Selective area epitaxy of magnesium oxide thin films on gallium nitride surfaces. Journal of Materials Research, 2016, 31, 36-45.	1.2	3

#	Article	IF	CITATIONS
91	Al Rich AlGaN Based APDs on Single Crystal AlN with Solar Blindness and Room Temperature Operation. , 2019, , .		3
92	Study of Dislocations in Homoepitaxially and Heteroepitaxially Grown AlN Layers. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000465.	0.8	3
93	On the characteristics of N-polar GaN Schottky barrier contacts with LPCVD SiN interlayers. Applied Physics Letters, 2021, 118, .	1.5	3
94	Direct Observation of the Polarity Control Mechanism in Aluminum Nitride Grown on Sapphire by Aberration Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 162-163.	0.2	2
95	Design Challenges for Mid-UV Laser Diodes. , 2018, , .		2
96	Modulating the Stress Response of <i>E. coli</i> at GaN Interfaces Using Surface Charge, Surface Chemistry, and Genetic Mutations. ACS Applied Bio Materials, 2020, 3, 7211-7218.	2.3	2
97	Polarity Control of LP-MOVPE GaN using N2 the Carrier Gas. Materials Research Society Symposia Proceedings, 2005, 892, 620.	0.1	2
98	HIGH FIELD TRANSPORT IN AlN. International Journal of High Speed Electronics and Systems, 2004, 14, 155-174.	0.3	1
99	Highly Oriented Diamond Films Grown at High Growth Rate. Materials Research Society Symposia Proceedings, 2006, 956, 1.	0.1	1
100	HgNO3 sensitivity of AlGaN/GaN field effect transistors functionalized with phytochelating peptides. AIP Advances, 2016, 6, 065105.	0.6	1
101	Stability and Reliability of III-Nitride Based Biosensors. , 2016, , 149-196.		1
102	Probing collective oscillation ofd-orbital electrons at the nanoscale. Applied Physics Letters, 2018, 112, 061102.	1.5	1
103	Cathodoluminescence of silicon doped aluminum nitride with scanning transmission electron microscopy. APL Materials, 2020, 8, .	2.2	1
104	Oxidative Stress Transcriptional Responses of <i>Escherichia coli</i> at GaN Interfaces. ACS Applied Bio Materials, 2020, 3, 9073-9081.	2.3	1
105	Hot Electron Transport in AlN. Materials Research Society Symposia Proceedings, 2000, 639, 11331.	0.1	0
106	Electron transport in AlN under high electric fields. Materials Research Society Symposia Proceedings, 2001, 693, 666.	0.1	0
107	Observations of electron velocity overshoot during high-field transport in AlN. Materials Research Society Symposia Proceedings, 2002, 743, L10.2.1.	0.1	0
108	Self-oriented Growth of GaN Films on Molten Gallium. Materials Research Society Symposia Proceedings, 2004, 831, 182.	0.1	0

#	Article	IF	CITATIONS
109	Advantages and limitations of UV optoelectronics on AlN substrates. , 2015, , .		0
110	Structure and Chemistry of Oxide Surface Reconstructions in III-Nitrides Observed using STEM EELS. Microscopy and Microanalysis, 2017, 23, 1444-1445.	0.2	0
111	Au:Ga Alloyed Clusters to Enhance Al Contacts to P-type GaN. , 2018, , .		0
112	On contacts to III-nitride deep-UV emitters. , 2018, , .		0
113	Quantum Well-Width Dependence Study on AlGaN Based UVC Laser. , 2019, , .		0
114	Temperature dependence of electronic bands in Al/GaN by utilization of invariant deep defect transition energies. Applied Physics Letters, 2021, 119, 022101.	1.5	0
115	HIGH FIELD TRANSPORT IN AIN . Selected Topics in Electornics and Systems, 2004, , 155-174.	0.2	Ο
116	(Invited) Ion Implantation and Polarity Control: Paths Toward a III-Nitride Superjunction. ECS Meeting Abstracts, 2021, MA2021-02, 983-983.	0.0	0
117	Schottky contacts to N-polar GaN with SiN interlayer for elevated temperature operation. Applied Physics Letters, 2022, 120, .	1.5	Ο
118	(Invited, Digital Presentation) Exploring Interfaces and Polarity to Realize Vertical III-Nitride Superjunction Devices. ECS Meeting Abstracts, 2022, MA2022-01, 1313-1313.	0.0	0