
Yosef Ghorbani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4898721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Framework toward a Highly Reliable Approach in Metal Accounting. Mineral Processing and Extractive Metallurgy Review, 2022, 43, 664-678.	5.0	6
2	Simulation-based training and learning: A review on technology-enhanced education for the minerals industry. Minerals Engineering, 2022, 175, 107272.	4.3	10
3	Oxidation-reduction effects in the flotation of copper sulfide minerals and molybdenite – A proof of concept at industrial scale. Minerals Engineering, 2022, 180, 107505.	4.3	2
4	Framework components for data-centric dry laboratories in the minerals industry: A path to science-and-technology-led innovation. The Extractive Industries and Society, 2022, 10, 101089.	1.2	4
5	Constraints on the Geometry and Gold Distribution in the Black Reef Formation of South Africa Using 3D Reflection Seismic Data and Micro-X-ray Computed Tomography. Natural Resources Research, 2022, 31, 1225-1244.	4.7	5
6	The minerals industry in the era of digital transition: An energy-efficient and environmentally conscious approach. Resources Policy, 2022, 78, 102851.	9.6	25
7	Ore mineral characteristics as rate-limiting factors in sphalerite flotation: Comparison of the mineral chemistry (iron and manganese content), grain size, and liberation. Minerals Engineering, 2022, 185, 107705.	4.3	7
8	A geometallurgical study of flotation performance in supergene and hypogene zones of Sungun copper deposit. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2021, 130, 126-135.	0.2	2
9	Repurposing legacy metallurgical data part II: Case studies of plant performance optimisation and process simulation. Minerals Engineering, 2021, 160, 106667.	4.3	4
10	Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. Chemosphere, 2021, 263, 128306.	8.2	32
11	Leaching manganese nodules with iron-reducing agents – A critical review. Minerals Engineering, 2021, 163, 106748.	4.3	24
12	Development and experimental validation of a texture-based 3D liberation model. Minerals Engineering, 2021, 164, 106828.	4.3	21
13	3D Ore Characterization as aÂParadigm Shift for Process Design and Simulation in Mineral Processing. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2021, 166, 384-389.	1.0	1
14	Gangues and Clays Minerals as Rate-Limiting Factors in Copper Heap Leaching: A Review. Metals, 2021, 11, 1539.	2.3	7
15	Valorisation of mine waste - Part I: Characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand gold mines (South Africa) as an example. Journal of Environmental Management, 2021, 295, 113013.	7.8	24
16	Valorisation of mine waste - Part II: Resource evaluation for consolidated and mineralised mine waste using the Central African Copperbelt as an example. Journal of Environmental Management, 2021, 299, 113553.	7.8	14
17	Towards integrated geometallurgical approach: Critical review of current practices and future trends. Minerals Engineering, 2020, 145, 106072.	4.3	30
18	Geometallurgical Approach for Implications of Ore Blending on Cyanide Leaching and Adsorption Behavior of Witwatersrand Gold Ores, South Africa. Natural Resources Research, 2020, 29, 1007-1030.	4.7	16

Yosef Ghorbani

#	Article	lF	CITATIONS
19	Repurposing legacy metallurgical data Part I: A move toward dry laboratories and data bank. Minerals Engineering, 2020, 159, 106646.	4.3	5
20	A process mineralogy approach to optimize molybdenite flotation in copper – molybdenum processing plants. Minerals Engineering, 2020, 157, 106557.	4.3	21
21	Soil salinity mapping by remote sensing south of Urmia Lake, Iran. Geoderma Regional, 2020, 22, e00317.	2.1	19
22	Textural Quantification and Classification of Drill Cores for Geometallurgy: Moving Toward 3D with X-ray Microcomputed Tomography (ÂμCT). Natural Resources Research, 2020, 29, 3547-3565.	4.7	11
23	Use of Seawater/Brine and Caliche's Salts as Clean and Environmentally Friendly Sources of Chloride and Nitrate Ions for Chalcopyrite Concentrate Leaching. Minerals (Basel, Switzerland), 2020, 10, 477.	2.0	17
24	Isolation and removal of cyanide from tailing dams in gold processing plant using natural bitumen. Journal of Environmental Management, 2020, 262, 110286.	7.8	16
25	Narrowing the gap between local standards and global best practices in bauxite mining: A case study in Malaysia. Resources Policy, 2020, 66, 101636.	9.6	17
26	Development of surface reaction of nano-colloid minerals using novel ionic liquids and assessing their removal ability for Pb(II) and Hg(II). Arabian Journal of Geosciences, 2020, 13, 1.	1.3	1
27	Application of machine learning techniques in mineral phase segmentation for X-ray microcomputed tomography (µCT) data. Minerals Engineering, 2019, 142, 105882.	4.3	30
28	A comparative study on the effects of dry and wet grinding on mineral flotation separation–a review. Journal of Materials Research and Technology, 2019, 8, 5004-5011.	5.8	45
29	Evaluation and comparison of different machine-learning methods to integrate sparse process data into a spatial model in geometallurgy. Minerals Engineering, 2019, 134, 156-165.	4.3	23
30	The Order of Kinetic Models, Rate Constant Distribution, and Maximum Combustible Recovery in Gilsonite Flotation. Mining, Metallurgy and Exploration, 2019, 36, 1101-1114.	0.8	0
31	Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 430-439.	4.9	19
32	X-ray Microcomputed Tomography (µCT) for Mineral Characterization: A Review of Data Analysis Methods. Minerals (Basel, Switzerland), 2019, 9, 183.	2.0	49
33	Cupric and Chloride Ions: Leaching of Chalcopyrite Concentrate with Low Chloride Concentration Media. Minerals (Basel, Switzerland), 2019, 9, 639.	2.0	12
34	Combined Effect of Operating Parameters on Separation Efficiency and Kinetics of Copper Flotation. Mining, Metallurgy and Exploration, 2019, 36, 409-421.	0.8	13
35	Modification of nano-clays with ionic liquids for the removal of Cd (II) ion from aqueous phase. Applied Clay Science, 2018, 158, 236-245.	5.2	34
36	The beneficiation of tailing of coal preparation plant by heavy-medium cyclone. International Journal of Coal Science and Technology, 2018, 5, 374-384.	6.0	6

#	Article	IF	CITATIONS
37	Design and Evaluation of an Expert System in a Crushing Plant. Minerals (Basel, Switzerland), 2018, 8, 469.	2.0	8
38	Joule Heating Effects in Electrokinetic Remediation: Role of Non-Uniform Soil Environments: Temperature Profile Behavior and Hydrodynamics. Environments - MDPI, 2018, 5, 92.	3.3	5
39	E-waste in the international context – A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Management, 2018, 82, 258-275.	7.4	335
40	Leaching of Chalcopyrite in Acidified Nitrate Using Seawater-Based Media. Minerals (Basel,) Tj ETQqO 0 0 rgBT /	Overlock 1 2.0	0 Tf 50 622 To
41	Effect of Pretreatment on Leaching Primary Copper Sulfide in Acid-Chloride Media. Minerals (Basel,) Tj ETQq1 1	0.784314	rgBT $_{138}^{\prime}$ Overloc
42	A review of sustainable development in the Chilean mining sector: past, present and future. International Journal of Mining, Reclamation and Environment, 2017, 31, 137-165.	2.8	58
43	A Process Mineralogy Approach to Gravity Concentration of Tantalum Bearing Minerals. Minerals (Basel, Switzerland), 2017, 7, 194.	2.0	21
44	Leaching behaviour and the solution consumption of uranium–vanadium ore in alkali carbonate–bicarbonate column leaching. Hydrometallurgy, 2016, 161, 127-137.	4.3	20
45	Chalcopyrite dissolution using seawater-based acidic media in the presence of oxidants. Hydrometallurgy, 2015, 157, 325-332.	4.3	32
46	The effect of seawater based media on copper dissolution from low-grade copper ore. Minerals Engineering, 2015, 71, 139-145.	4.3	46
47	Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation. Hydrometallurgy, 2014, 150, 281-289.	4.3	42
48	Investigation of particles with high crack density produced by HPGR and its effect on the redistribution of the particle size fraction in heaps. Minerals Engineering, 2013, 43-44, 44-51.	4.3	44
49	Investigation of the effect of mineralogy as rate-limiting factors in large particle leaching. Minerals Engineering, 2013, 52, 38-51.	4.3	24
50	Investigation and modelling of the progression of zinc leaching from large sphalerite ore particles. Hydrometallurgy, 2013, 131-132, 8-23.	4.3	30
51	An experimental study of the long-term bioleaching of large sphalerite ore particles in a circulating fluid fixed-bed reactor. Hydrometallurgy, 2012, 129-130, 161-171.	4.3	26
52	Large particle effects in chemical/biochemical heap leach processes – A review. Minerals Engineering, 2011, 24, 1172-1184.	4.3	94
53	Use of X-ray computed tomography to investigate crack distribution and mineral dissemination in sphalerite ore particles. Minerals Engineering, 2011, 24, 1249-1257.	4.3	77
54	Designing of an environmental assessment algorithm for surface mining projects. Journal of Environmental Management, 2009, 90, 2422-2435.	7.8	28

#	Article	IF	CITATIONS
55	Heap leaching technology – current state, innovations and future directions: A review. Mineral Processing and Extractive Metallurgy Review, 0, , .	5.0	66
56	The Evaluation of Starch-Based Flocculant on the Thickener Operation in the Molybdenum Processing Plant and Competency of Molybdenite Flotation. Mining, Metallurgy and Exploration, 0, , 1.	0.8	0