Isabel BorrÃ;s-Linares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4898463/publications.pdf

Version: 2024-02-01

58 papers

2,487 citations

30 h-index 197818 49 g-index

58 all docs 58 docs citations

58 times ranked 3673 citing authors

#	Article	IF	CITATIONS
1	Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Industrial Crops and Products, 2015, 69, 385-394.	5.2	165
2	Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds. International Journal of Molecular Sciences, 2014, 15, 20585-20606.	4.1	157
3	Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil. Cell Cycle, 2013, 12, 555-578.	2.6	131
4	Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 894-899.	2.4	117
5	Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. Journal of Pharmaceutical and Biomedical Analysis, 2018, 156, 313-322.	2.8	105
6	Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Research International, 2018, 105, 752-763.	6.2	99
7	Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. Journal of Chromatography A. 2011, 1218, 7682-7690.	3.7	94
8	Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins. International Journal of Molecular Sciences, 2017, 18, 376.	4.1	85
9	Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chemistry, 2018, 245, 707-716.	8.2	82
10	Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. Journal of Supercritical Fluids, 2019, 147, 213-221.	3.2	75
11	Phenylpropanoids and their metabolites are the major compounds responsible for blood-cell protection against oxidative stress after administration of Lippia citriodora in rats. Phytomedicine, 2013, 20, 1112-1118.	5.3	67
12	Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. Journal of Food Engineering, 2013, 119, 525-532.	5.2	64
13	Bioavailability study of a polyphenolâ€enriched extract from <i><scp>H</scp>ibiscus sabdariffa</i> in rats and associated antioxidant status. Molecular Nutrition and Food Research, 2012, 56, 1590-1595.	3.3	58
14	Obtaining an Extract Rich in Phenolic Compounds from Olive Pomace by Pressurized Liquid Extraction. Molecules, 2019, 24, 3108.	3.8	58
15	Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells. Carcinogenesis, 2018, 39, 601-613.	2.8	53
16	Characterisation of ginger extracts obtained by subcritical water. Journal of Supercritical Fluids, 2017, 123, 92-100.	3.2	52
17	Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chemistry, 2021, 352, 129300.	8.2	51
18	Microbial and metabolic multiâ€omic correlations in systemic sclerosis patients. Annals of the New York Academy of Sciences, 2018, 1421, 97-109.	3.8	50

#	Article	IF	Citations
19	Potential antimicrobial activity of honey phenolic compounds against Gram positive and Gram negative bacteria. LWT - Food Science and Technology, 2019, 101, 236-245.	5.2	50
20	A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells. Food and Chemical Toxicology, 2015, 80, 215-222.	3.6	49
21	Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel byâ€product. Electrophoresis, 2018, 39, 1908-1916.	2.4	49
22	Structure–Biological Activity Relationships of Extra-Virgin Olive Oil Phenolic Compounds: Health Properties and Bioavailability. Antioxidants, 2020, 9, 685.	5.1	48
23	Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves. Industrial Crops and Products, 2017, 108, 106-112.	5. 2	44
24	Comparative study of conventional and pressurized liquid extraction for recovering bioactive compounds from Lippia citriodora leaves. Food Research International, 2018, 109, 213-222.	6.2	41
25	Identification of a Shared Microbiomic and Metabolomic Profile in Systemic Autoimmune Diseases. Journal of Clinical Medicine, 2019, 8, 1291.	2.4	37
26	Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology. Journal of Drug Delivery Science and Technology, 2019, 49, 660-667.	3.0	36
27	Olive oil mill wastewaters: Phenolic content characterization during degradation by Coriolopsis gallica. Chemosphere, 2014, 113, 62-70.	8.2	35
28	Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS ONE, 2017, 12, e0172063.	2.5	35
29	In-Depth Characterization of Bioactive Extracts from Posidonia oceanica Waste Biomass. Marine Drugs, 2019, 17, 409.	4.6	34
30	A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents. Food Research International, 2020, 137, 109646.	6.2	34
31	Optimization of the extraction of phytochemicals from black mulberry (Morus nigra L.) leaves. Journal of Industrial and Engineering Chemistry, 2018, 68, 282-292.	5 . 8	33
32	Phenolic compounds in rosemary as potential source of bioactive compounds against colorectal cancer: In situ absorption and metabolism study. Journal of Functional Foods, 2017, 33, 202-210.	3.4	30
33	The prebiotic properties of Hibiscus sabdariffa extract contribute to the beneficial effects in diet-induced obesity in mice. Food Research International, 2020, 127, 108722.	6.2	30
34	Urinary and plasma metabolite differences detected by HPLC-ESI-QTOF-MS in systemic sclerosis patients. Journal of Pharmaceutical and Biomedical Analysis, 2019, 162, 82-90.	2.8	29
35	Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS. International Journal of Molecular Sciences, 2015, 16, 18396-18411.	4.1	28
36	Comparative Assessment of Phytochemical Profiles of Comfrey (Symphytum officinale L.) Root Extracts Obtained by Different Extraction Techniques. Molecules, 2020, 25, 837.	3.8	27

#	Article	IF	Citations
37	New technological approaches for recovering bioactive food constituents from sweet cherry (<scp><i>Prunus avium</i></scp> L.) stems. Phytochemical Analysis, 2020, 31, 119-130.	2.4	24
38	Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods, 2021, 10, 398.	4.3	23
39	Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants, 2020, 9, 1195.	5.1	18
40	Sweet Cherry Byproducts Processed by Green Extraction Techniques as a Source of Bioactive Compounds with Antiaging Properties. Antioxidants, 2020, 9, 418.	5.1	18
41	Correlation between the cellular metabolism of quercetin and its glucuronide metabolite and oxidative stress in hypertrophied 3T3-L1 adipocytes. Phytomedicine, 2017, 25, 25-28.	5.3	17
42	Evaluation of metabolic changes in liver and serum of streptozotocin-induced diabetic rats after Mango diet supplementation. Journal of Functional Foods, 2020, 64, 103695.	3.4	15
43	Artichoke By-Products as Natural Source of Phenolic Food Ingredient. Applied Sciences (Switzerland), 2021, 11, 3788.	2.5	15
44	Further exploring the absorption and enterocyte metabolism of quercetin forms in the Caco-2 model using nano-LC-TOF-MS. Electrophoresis, 2016, 37, 998-1006.	2.4	14
45	Manufacturing design to improve the attainment of functional ingredients from Aloysia citriodora leaves by advanced microwave technology. Journal of Industrial and Engineering Chemistry, 2019, 79, 52-61.	5 . 8	14
46	Discovering new metabolite alterations in primary sjögren's syndrome in urinary and plasma samples using an HPLC-ESI-QTOF-MS methodology. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179, 112999.	2.8	14
47	Pressurized GRAS solvents for the green extraction of phenolic compounds from hibiscus sabdariffa calyces. Food Research International, 2020, 137, 109466.	6.2	14
48	A Case Report of Switching from Specific Vendor-Based to R-Based Pipelines for Untargeted LC-MS Metabolomics. Metabolites, 2020, 10, 28.	2.9	13
49	Metabolic Disturbances in Urinary and Plasma Samples from Seven Different Systemic Autoimmune Diseases Detected by HPLC-ESI-QTOF-MS. Journal of Proteome Research, 2020, 19, 3220-3229.	3.7	12
50	A fingerprinting metabolomic approach reveals deregulation of endogenous metabolites after the intake of a bioactive garlic supplement. Journal of Functional Foods, 2018, 49, 137-145.	3.4	9
51	Characterization and Influence of Static In Vitro Digestion on Bioaccessibility of Bioactive Polyphenols from an Olive Leaf Extract. Foods, 2022, 11, 743.	4.3	9
52	Potential Antioxidant and Antiviral Activities of Hydroethanolic Extracts of Selected Lamiaceae Species. Foods, 2022, 11, 1862.	4.3	8
53	Recovery from Food Wasteâ€"Biscuit Doughs Enriched with Pomegranate Peel Powder as a Model of Fortified Aliment. Biology, 2022, 11, 416.	2.8	5
54	Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae, 2022, 8, 583.	2.8	5

#	Article	IF	CITATIONS
55	Preliminary Investigation of Different Drying Systems to Preserve Hydroxytyrosol and Its Derivatives in Olive Oil Filter Cake Pressurized Liquid Extracts. Foods, 2021, 10, 1407.	4.3	3
56	The Carao (Cassia grandis L.): Its Potential Usage in Pharmacological, Nutritional, and Medicinal Applications., 2021,, 403-427.		3
57	Moringa oleifera Leaf Powder as Functional Additive in Cookies to Protect SH-SY5Y Cells. Applied Sciences (Switzerland), 2021, 11, 9995.	2.5	2
58	The intracellular metabolites of quercetin derivatives correlate with oxidative stress in hypertrophied 3T3-L1 adipocytes. Free Radical Biology and Medicine, 2017, 108, S94.	2.9	0