Reynaldo Villalonga

List of Publications by Citations

Source: https://exaly.com/author-pdf/4898408/reynaldo-villalonga-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

181 60 5,217 41 h-index g-index citations papers 6.3 184 5.76 5,724 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
181	Supramolecular chemistry of cyclodextrins in enzyme technology. <i>Chemical Reviews</i> , 2007 , 107, 3088-1	16 8.1	325
180	Preparation of core-shell FeO@poly(dopamine) magnetic nanoparticles for biosensor construction. Journal of Materials Chemistry B, 2014 , 2, 739-746	7.3	175
179	Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: analysis of their mechanical and barrier properties. <i>Biomacromolecules</i> , 2006 , 7, 744-9	6.9	139
178	Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. <i>RSC Advances</i> , 2016 , 6, 27329-27334	3.7	102
177	Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9116-23	16.4	92
176	Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. <i>Chemical Communications</i> , 2013 , 49, 6391-3	5.8	86
175	Adamantane/beta-cyclodextrin affinity biosensors based on single-walled carbon nanotubes. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1128-34	11.8	84
174	Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. <i>ACS Nano</i> , 2019 , 13, 12171-12183	16.7	83
173	Immobilization of Adamantane-Modified Cytochromecat Electrode Surfaces through Supramolecular Interactions. <i>Langmuir</i> , 2002 , 18, 5051-5054	4	83
172	Interactive models of communication at the nanoscale using nanoparticles that talk to one another. <i>Nature Communications</i> , 2017 , 8, 15511	17.4	82
171	Preparation and functional properties of trypsin modified by carboxymethylcellulose. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2000 , 10, 483-490		69
170	Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits. <i>Food Chemistry</i> , 2010 , 123, 669-678	8.5	66
169	Electrochemical biosensors based on nucleic acid aptamers. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 55-72	4.4	66
168	Direct Electron Transfer between a Site-Specific Pyrene-Modified Laccase and Carbon Nanotube/Gold Nanoparticle Supramolecular Assemblies for Bioelectrocatalytic Dioxygen Reduction. <i>ACS Catalysis</i> , 2016 , 6, 1894-1900	13.1	65
167	Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. <i>Analytical Chemistry</i> , 2015 , 87, 2290-8	7.8	64
166	Functional stabilization of cellulase by covalent modification with chitosan. <i>Journal of Chemical Technology and Biotechnology</i> , 2001 , 76, 489-493	3.5	61
165	Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme	8.5	59

164	Biosensors in forensic analysis. A review. <i>Analytica Chimica Acta</i> , 2014 , 823, 1-19	6.6	58
163	Ultrasensitive detection of adrenocorticotropin hormone (ACTH) using disposable phenylboronic-modified electrochemical immunosensors. <i>Biosensors and Bioelectronics</i> , 2012 , 35, 82-86	11.8	58
162	Amperometric Biosensor for Hydrogen Peroxide, Using Supramolecularly Immobilized Horseradish Peroxidase on the Ecyclodextrin-Coated Gold Electrode. <i>Electroanalysis</i> , 2007 , 19, 2538-2542	3	58
161	Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 309-315	8.5	57
160	Versatility of divinylsulfone supports permits the tuning of CALB properties during its immobilization. <i>RSC Advances</i> , 2015 , 5, 35801-35810	3.7	56
159	Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17Eestradiol. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 343-351	11.8	54
158	Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors. <i>Analytical Chemistry</i> , 2011 , 83, 7807-14	7.8	53
157	Transglutaminase-catalyzed preparation of chitosanBvalbumin films. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 437-441	3.8	53
156	Rapid Legionella pneumophila determination based on a disposable core-shell FeD@poly(dopamine) magnetic nanoparticles immunoplatform. <i>Analytica Chimica Acta</i> , 2015 , 887, 51-58	6.6	52
155	Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. <i>Chemistry - A European Journal</i> , 2013 , 19, 7889-94	4.8	52
154	Transglutaminase-catalyzed synthesis of trypsin-cyclodextrin conjugates: kinetics and stability properties. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 732-7	4.9	52
153	Supramolecular immobilization of xanthine oxidase on electropolymerized matrix of functionalized hybrid gold nanoparticles/single-walled carbon nanotubes for the preparation of electrochemical biosensors. ACS Applied Materials & amp; Interfaces, 2012, 4, 4312-9	9.5	51
152	Wiring horseradish peroxidase on gold nanoparticles-based nanostructured polymeric network for the construction of mediatorless hydrogen peroxide biosensor. <i>Electrochimica Acta</i> , 2011 , 56, 4672-467	- 6.7	50
151	Lipase fraction from the viscera of grey mullet (Mugil cephalus). <i>Enzyme and Microbial Technology</i> , 2007 , 40, 394-402	3.8	49
150	Amperometric magnetoimmunosensor for ErbB2 breast cancer biomarker determination in human serum, cell lysates and intact breast cancer cells. <i>Biosensors and Bioelectronics</i> , 2015 , 70, 34-41	11.8	48
149	Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. <i>Chemistry - A European Journal</i> , 2017 , 23, 1353-1360	4.8	48
148	Construction of an amperometric biosensor for xanthine via supramolecular associations. <i>Electrochemistry Communications</i> , 2007 , 9, 454-458	5.1	47
147	Stabilization of invertase by modification of sugar chains with chitosan. <i>Biotechnology Letters</i> , 2000 , 22, 347-350	3	47

146	Ferrocene branched chitosan for the construction of a reagentless amperometric hydrogen peroxide biosensor. <i>Macromolecular Bioscience</i> , 2007 , 7, 435-9	5.5	46
145	Hybrid Decorated Core@Shell Janus Nanoparticles as a Flexible Platform for Targeted Multimodal Molecular Bioimaging of Cancer. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2018 , 10, 31032-31043	9.5	44
144	Decorating carbon nanotubes with polyethylene glycol-coated magnetic nanoparticles for implementing highly sensitive enzyme biosensors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12858		43
143	Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. <i>Enzyme and Microbial Technology</i> , 2006 , 38, 22-27	3.8	43
142	GrapheneBolyamidoamine dendrimer B t nanoparticles hybrid nanomaterial for the preparation of mediatorless enzyme biosensor. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 717-718, 96-102	4.1	42
141	Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum. <i>Analytica Chimica Acta</i> , 2014 , 838, 37-44	6.6	41
140	Functional stabilization of invertase by covalent modification with pectin. <i>Biotechnology Letters</i> , 2000 , 22, 1191-1195	3	41
139	Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. <i>Electrochimica Acta</i> , 2015 , 174, 332-339	6.7	40
138	Amperometric biosensor for xanthine with supramolecular architecture. <i>Chemical Communications</i> , 2007 , 942-4	5.8	40
137	Hydrogen peroxide biosensor with a supramolecular layer-by-layer design. <i>Langmuir</i> , 2008 , 24, 7654-7	4	39
136	Biomedical nanomotors: efficient glucose-mediated insulin release. <i>Nanoscale</i> , 2017 , 9, 14307-14311	7.7	38
135	Supramolecular assembly of Eyclodextrin-modified gold nanoparticles and Cu, Zn-superoxide dismutase on catalase. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2005 , 35, 79-85		38
134	Electrochemical biointerfaces based on carbon nanotubes-mesoporous silica hybrid material: Bioelectrocatalysis of hemoglobin and biosensing applications. <i>Biosensors and Bioelectronics</i> , 2018 , 111, 144-151	11.8	36
133	Thermal stabilization of trypsin by enzymic modification with beta-cyclodextrin derivatives. <i>Biotechnology and Applied Biochemistry</i> , 2003 , 38, 53-9	2.8	36
132	Crumpled reduced graphene oxide-polyamidoamine dendrimer hybrid nanoparticles for the preparation of an electrochemical biosensor. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2289-2296	7.3	35
131	Effect of transglutaminase on the mechanical and barrier properties of whey protein/pectin films prepared at complexation pH. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 4593-8	5.7	35
130	Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. <i>Electrochemistry Communications</i> , 2013 , 30, 51-54	5.1	33
129	Decorating graphene oxide/nanogold with dextran-based polymer brushes for the construction of ultrasensitive electrochemical enzyme biosensors. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3518-3524	7.3	33

(2012-2006)

128	Transglutaminase-catalyzed site-specific glycosidation of catalase with aminated dextran. <i>Journal of Biotechnology</i> , 2006 , 122, 326-33	3.7	32
127	Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element. <i>Analytica Chimica Acta</i> , 2019 , 1061, 84-91	6.6	32
126	Pyrene-adamantane-Etyclodextrin: An efficient host@uest system for the biofunctionalization of SWCNT electrodes. <i>Carbon</i> , 2011 , 49, 2571-2578	10.4	31
125	Cyclodextrin-grafted polysaccharides as supramolecular carrier systems for naproxen. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 , 16, 1499-501	2.9	31
124	Electrochemical aptamer-based bioplatform for ultrasensitive detection of prostate specific antigen. <i>Sensors and Actuators B: Chemical</i> , 2019 , 297, 126762	8.5	30
123	Gold nanoparticles: Poly(diallyldimethylammonium chloride)darbon nanotubes composites as platforms for the preparation of electrochemical enzyme biosensors: Application to the determination of cholesterol. <i>Journal of Electroanalytical Chemistry</i> , 2011 , 661, 171-178	4.1	30
122	Novel enzyme biosensor for hydrogen peroxide via supramolecular associations. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2028-33	11.8	30
121	Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction. <i>Sensors and Actuators B: Chemical</i> , 2008 , 129, 195-199	8.5	30
120	Superoxide Dismutase Mimetic Activity of the Metal (II) Complexes of a Dithiocarbamate Derivative of Ecyclodextrin1. <i>Journal of Carbohydrate Chemistry</i> , 1995 , 14, 1379-1386	1.7	30
119	Electropolymerized network of polyamidoamine dendron-coated gold nanoparticles as novel nanostructured electrode surface for biosensor construction. <i>Analyst, The</i> , 2012 , 137, 342-8	5	29
118	Amperometric enzyme biosensor for hydrogen peroxide via Ugi multicomponent reaction. <i>Electrochemistry Communications</i> , 2007 , 9, 1655-1660	5.1	29
117	Chemical conjugation of trypsin with monoamine derivatives of cyclodextrins. <i>Enzyme and Microbial Technology</i> , 2002 , 31, 543-548	3.8	29
116	Stabilization of Hamylase by chemical modification with carboxymethylcellulose. <i>Journal of Chemical Technology and Biotechnology</i> , 1999 , 74, 635-638	3.5	29
115	Disposable electrochemical biosensors for Brettanomyces bruxellensis and total yeast content in wine based on core-shell magnetic nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2019 , 279, 15-21	8.5	29
114	Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. <i>Journal of Electroanalytical Chemistry</i> , 2009 , 629, 126-132	4.1	28
113	Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin. <i>Bioprocess and Biosystems Engineering</i> , 2006 , 28, 387-95	3.7	28
112	Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au-mesoporous silica nanoparticles for enhanced cargo delivery. <i>Chemical Communications</i> , 2019 , 55, 13164-13167	5.8	28
111	Supramolecular immobilization of redox enzymes on cyclodextrin-coated magnetic nanoparticles for biosensing applications. <i>Journal of Colloid and Interface Science</i> , 2012 , 386, 181-8	9.3	27

110	Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery. <i>ACS Nano</i> , 2021 , 15, 4467-4480	16.7	27
109	Novel reduced graphene oxide-glycol chitosan nanohybrid for the assembly of an amperometric enzyme biosensor for phenols. <i>Analyst, The</i> , 2016 , 141, 4162-9	5	27
108	An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie - International Edition, 2019 , 58, 14986-14990	16.4	26
107	Improved functional properties of trypsin modified by monosubstituted amino-Etyclodextrins. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2003 , 21, 133-141		26
106	Mesoporous silica thin film mechanized with a DNAzyme-based molecular switch for electrochemical biosensing. <i>Electrochemistry Communications</i> , 2015 , 58, 57-61	5.1	25
105	Functionalization of bamboo-like carbon nanotubes with 3-mercaptophenylboronic acid-modified gold nanoparticles for the development of a hybrid glucose enzyme electrochemical biosensor. <i>Sensors and Actuators B: Chemical</i> , 2015 , 216, 629-637	8.5	25
104	Nanochannel-based electrochemical assay for transglutaminase activity. <i>Chemical Communications</i> , 2014 , 50, 13356-8	5.8	25
103	An electrochemical immunosensor for adiponectin using reduced graphene oxideBarboxymethylcellulose hybrid as electrode scaffold. <i>Sensors and Actuators B: Chemical</i> , 2016 , 223, 89-94	8.5	24
102	Echymotrypsin stabilization by chemical conjugation with O-carboxymethyl-poly-Ecyclodextrin. Process Biochemistry, 2004 , 39, 535-539	4.8	24
101	Stabilization of trypsin by chemical modification with Eyclodextrin monoaldehyde. <i>Biotechnology Letters</i> , 2002 , 24, 1455-1459	3	24
100	Estrogen receptor Edetermination in serum, cell lysates and breast cancer cells using an amperometric magnetoimmunosensing platform. <i>Sensing and Bio-Sensing Research</i> , 2016 , 7, 71-76	3.3	23
99	Neoglycoenzyme-Gated Mesoporous Silica Nanoparticles: Toward the Design of Nanodevices for Pulsatile Programmed Sequential Delivery. <i>ACS Applied Materials & Delivery (Naterials & Delivery (Naterial</i>	9.5	22
98	Antioxidative properties of copper(II) complexes¶View all notes. <i>Journal of Coordination Chemistry</i> , 2009 , 62, 100-107	1.6	22
97	Improved anti-inflammatory and pharmacokinetic properties for superoxide dismutase by chemical glycosidation with carboxymethylchitin. <i>Macromolecular Bioscience</i> , 2005 , 5, 118-23	5.5	22
96	Water-Soluble Reduced Graphene Oxide Carboxymethylcellulose Hybrid Nanomaterial for Electrochemical Biosensor Design. <i>ChemPlusChem</i> , 2014 , 79, 1334-1341	2.8	21
95	Effect of Eyclodextrin-polysucrose polymer on the stability properties of soluble trypsin. <i>Enzyme</i> and Microbial Technology, 2004 , 34, 78-82	3.8	21
94	Dendrimers as Soft Nanomaterials for Electrochemical Immunosensors. <i>Nanomaterials</i> , 2019 , 9,	5.4	21
93	Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. <i>Chemistry - A European Journal</i> , 2017 , 23, 4276-4281	4.8	20

(2016-2015)

92	Single-Walled Carbon Nanotubes/AuMesoporous Silica Janus Nanoparticles as Building Blocks for the Preparation of a Bienzyme Biosensor. <i>ChemElectroChem</i> , 2015 , 2, 1735-1741	4.3	20	
91	Structure/function relationships of several biopolymers as related to invertase stability in dehydrated systems. <i>Biomacromolecules</i> , 2008 , 9, 741-7	6.9	20	
90	Supramolecular interactions mediated thermal stabilization for hmylase modified with a Eyclodextrin-carboxymethylcellulose polymer. <i>Biotechnology Letters</i> , 2002 , 24, 1665-1668	3	20	
89	Janus Gold Nanostars-Mesoporous Silica Nanoparticles for NIR-Light-Triggered Drug Delivery. Chemistry - A European Journal, 2019 , 25, 8471-8478	4.8	19	
88	Supramolecular immobilization of glucose oxidase on gold coated with cyclodextrin-modified cysteamine core PAMAM G-4 dendron/Pt nanoparticles for mediatorless biosensor design. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 3773-81	4.4	19	
87	Functional properties and application in peptide synthesis of trypsin modified with cyclodextrin-containing dicarboxylic acids. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2004 , 31, 47-52		19	
86	Functional stabilization of trypsin by conjugation with beta-cyclodextrin-modified carboxymethylcellulose. <i>Preparative Biochemistry and Biotechnology</i> , 2003 , 33, 53-66	2.4	19	
85	Chemical glycosidation of trypsin with O-carboxymethyl-poly-beta-cyclodextrin: catalytic and stability properties. <i>Biotechnology and Applied Biochemistry</i> , 2005 , 41, 217-23	2.8	19	
84	Thermal stabilization of trypsin with glycol chitosan. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2005 , 34, 14-17		19	
83	Supramolecular-mediated immobilization of L-phenylalanine dehydrogenase on cyclodextrin-coated Au electrodes for biosensor applications. <i>Biotechnology Letters</i> , 2007 , 29, 447-52	3	18	
82	Improved anti-inflammatory properties for naproxen with cyclodextrin-grafted polysaccharides. <i>Macromolecular Bioscience</i> , 2006 , 6, 555-61	5.5	18	
81	Supramolecular-mediated thermostabilization of phenylalanine dehydrogenase modified with Etyclodextrin derivatives. <i>Biochemical Engineering Journal</i> , 2006 , 30, 26-32	4.2	18	
80	Neoglycoenzymes. <i>Chemical Reviews</i> , 2014 , 114, 4868-917	68.1	17	
79	A Layer-by-Layer Biosensing Architecture Based on Polyamidoamine Dendrimer and Carboxymethylcellulose-Modified Graphene Oxide. <i>Electroanalysis</i> , 2015 , 27, 2131-2138	3	17	
78	Partial purification and properties of cyclodextrin glycosiltransferase (CGTase) from alkalophilic Bacillus species. <i>SpringerPlus</i> , 2012 , 1, 61		17	
77	Preparation of thermostable trypsinpolysaccharide neoglycoenzymes through Ugi multicomponent reaction. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2009 , 59, 126-130		17	
76	Effects of beta-cyclodextrin-dextran polymer on stability properties of trypsin. <i>Biotechnology and Bioengineering</i> , 2003 , 83, 743-7	4.9	17	
75	Label-free electrochemical genosensor based on mesoporous silica thin film. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 7321-7	4.4	17	

74	Gold nanoparticles-decorated silver-bipyridine nanobelts for the construction of mediatorless hydrogen peroxide biosensor. <i>Journal of Colloid and Interface Science</i> , 2016 , 482, 105-111	9.3	17
73	Amperometric magnetobiosensors using poly(dopamine)-modified Fe3O4 magnetic nanoparticles for the detection of phenolic compounds. <i>Analytical Methods</i> , 2015 , 7, 8801-8808	3.2	16
72	Au-Mesoporous silica nanoparticles gated with disulfide-linked oligo(ethylene glycol) chains for tunable cargo delivery mediated by an integrated enzymatic control unit. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 6734-6739	7-3	16
71	Determination of SOD-Like activity of Copper(II) complexes with Amino acid dithiocarbamates. <i>Journal of Inorganic Biochemistry</i> , 1997 , 66, 213-217	4.2	16
70	Stabilization of Ethymotrypsin by chemical modification with monoamine cyclodextrin. <i>Process Biochemistry</i> , 2005 , 40, 2091-2094	4.8	16
69	Glycosidation of cu,zn-superoxide dismutase with end-group aminated dextran: pharmacological and pharmacokinetics properties. <i>Macromolecular Bioscience</i> , 2005 , 5, 1220-5	5.5	16
68	ECyclodextrin modifications as related to enzyme stability in dehydrated systems: Supramolecular transitions and molecular interactions. <i>Carbohydrate Polymers</i> , 2011 , 83, 203-209	10.3	15
67	Bienzymatic supramolecular complex of catalase modified with cyclodextrin-branched carboxymethylcellulose and superoxide dismutase: stability and anti-inflammatory properties. <i>Macromolecular Bioscience</i> , 2007 , 7, 70-5	5.5	15
66	Immobilizing Cu,Zn-superoxide dismutase in hydrogels of carboxymethylcellulose improves its stability and wound healing properties. <i>Biochemistry (Moscow)</i> , 2006 , 71, 1324-8	2.9	15
65	Disposable electrochemical immunosensor for Brettanomyces bruxellensis based on nanogold-reduced graphene oxide hybrid nanomaterial. <i>Analytical and Bioanalytical Chemistry</i> , 2017 , 409, 5667-5674	4.4	14
64	Stabilization of alpha-chymotrypsin by modification with beta-cyclodextrin derivatives. <i>Biotechnology and Applied Biochemistry</i> , 2002 , 36, 235-9	2.8	14
63	Toward chemical communication between nanodevices. <i>Nano Today</i> , 2018 , 18, 8-11	17.9	13
62	Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. <i>ACS Applied Materials & Design of Nanobots</i> 2018, 10, 26494-26500	9.5	13
61	First Occurrence of Tetrazines in Aqueous Solution: Electrochemistry and Fluorescence. <i>ChemPhysChem</i> , 2015 , 16, 3695-9	3.2	13
60	IMMOBILIZATION OF INVERTASEITHITOSAN CONJUGATE ON HYALURONIC-ACID-MODIFIED CHITIN. <i>Journal of Food Biochemistry</i> , 2008 , 32, 264-277	3.3	13
59	Increased conformational and thermal stability properties for phenylalanine dehydrogenase by chemical glycosidation with end-group activated dextran. <i>Biotechnology Letters</i> , 2005 , 27, 1311-7	3	13
58	Invertase Stabilization by Chemical Modification of Sugar Chains with Carboxymethylcellulose. <i>Journal of Bioactive and Compatible Polymers</i> , 2002 , 17, 161-172	2	13
57	Layer-by-layer supramolecular architecture of cyclodextrin-modified PAMAM dendrimers and adamantane-modified peroxidase on gold surface for electrochemical biosensing. <i>Electrochimica Acta</i> , 2012 , 76, 249-255	6.7	12

(2019-2019)

56	Avidin-gated mesoporous silica nanoparticles for signal amplification in electrochemical biosensor. <i>Electrochemistry Communications</i> , 2019 , 108, 106556	5.1	11
55	Putrescine-polysaccharide conjugates as transglutaminase substrates and their possible use in producing crosslinked films. <i>Amino Acids</i> , 2010 , 38, 669-75	3.5	11
54	A copper(II) thiosemicarbazone complex built on gold for the immobilization of lipase and laccase. <i>Journal of Colloid and Interface Science</i> , 2010 , 348, 96-100	9.3	11
53	Preparation of Ecyclodextrin-Dextran Polymers and their Use as Supramolecular Carrier Systems for Naproxen. <i>Polymer Bulletin</i> , 2007 , 59, 597-605	2.4	11
52	Immobilization of chitosan-invertase neoglycoconjugate on carboxymethylcellulose-modified chitin. <i>Preparative Biochemistry and Biotechnology</i> , 2006 , 36, 259-71	2.4	11
51	Transglutaminase-catalysed glycosidation of trypsin with aminated polysaccharides. <i>World Journal of Microbiology and Biotechnology</i> , 2006 , 22, 595-602	4.4	11
50	Seed-mediated growth of jack-shaped gold nanoparticles from cyclodextrin-coated gold nanospheres. <i>Dalton Transactions</i> , 2013 , 42, 14309-14	4.3	10
49	Supramolecular-mediated Immobilization of Trypsin on Cyclodextrin-modified Gold Nanospheres. <i>Supramolecular Chemistry</i> , 2005 , 17, 387-391	1.8	10
48	Electrocatalytic oxidation enhancement at the surface of InGaN films and nanostructures grown directly on Si(111). <i>Electrochemistry Communications</i> , 2015 , 60, 158-162	5.1	9
47	Gold nanoparticles enhancing dismutation of superoxide radical by its bis(dithiocarbamato)copper(II) shell. <i>Inorganic Chemistry</i> , 2011 , 50, 4705-12	5.1	9
46	Glycosidation of phenylalanine dehydrogenase with O-carboxymethyl-poly-Eyclodextrin. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 471-475	3.8	9
45	Towards nanomedicine with a supramolecular approach: a review. <i>IET Nanobiotechnology</i> , 2005 , 152, 159-64		9
44	Anti-inflammatory properties of superoxide dismutase modified with carboxymetil-cellulose polymer and hydrogel. <i>Journal of Materials Science: Materials in Medicine</i> , 2006 , 17, 427-35	4.5	9
43	Gold nanoparticles/silver-bipyridine hybrid nanobelts with tuned peroxidase-like activity. <i>RSC Advances</i> , 2016 , 6, 74957-74960	3.7	9
42	Disposable amperometric immunosensor for Saccharomyces cerevisiae based on carboxylated graphene oxide-modified electrodes. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 7901-7907	4.4	9
41	Amperometric aptasensor with sandwich-type architecture for troponin I based on carboxyethylsilanetriol-modified graphene oxide coated electrodes. <i>Biosensors and Bioelectronics</i> , 2021 , 183, 113203	11.8	9
40	A chemical circular communication network at the nanoscale. <i>Chemical Science</i> , 2020 , 12, 1551-1559	9.4	9
39	Janus nanocarrier powered by bi-enzymatic cascade system for smart delivery. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 4669-4676	7.3	8

38	Immobilization of Xanthine Oxidase on Carbon Nanotubes Through Double Supramolecular Junctions for Biosensor Construction. <i>Electroanalysis</i> , 2011 , 23, 1790-1796	3	8
37	Solubilization and stabilization of sodium dicloxacillin by cyclodextrin inclusion. <i>Current Drug Discovery Technologies</i> , 2008 , 5, 140-5	1.5	8
36	Improved Pharmacological Properties for Superoxide Dismutase Modified with Carboxymethycellulose. <i>Journal of Bioactive and Compatible Polymers</i> , 2005 , 20, 557-570	2	8
35	Amperometric aptasensor for carcinoembryonic antigen based on a reduced graphene oxide/gold nanoparticles modified electrode. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 877, 114511	4.1	7
34	Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase. <i>Mikrochimica Acta</i> , 2016 , 183, 2023-2030	5.8	7
33	Dithioacetal-mechanized mesoporous nanosensor for Hg(II) determination. <i>Microporous and Mesoporous Materials</i> , 2020 , 297, 110054	5.3	6
32	An enzyme-controlled Janus nanomachine for on-command dual and sequential release. <i>Chemical Communications</i> , 2020 , 56, 6440-6443	5.8	6
31	Polyethylene glycol-based low generation dendrimers functionalized with Eyclodextrin as cryoand dehydro-protectant of catalase formulations. <i>Biotechnology Progress</i> , 2013 , 29, 786-95	2.8	6
30	Improved pharmacological properties for superoxide dismutase modified with mannan. <i>Biotechnology and Applied Biochemistry</i> , 2006 , 44, 159-65	2.8	6
29	Metal-induced stabilization of trypsin modified with alpha-oxoglutaric acid. <i>Biotechnology Letters</i> , 2004 , 26, 209-12	3	6
28	Improved Pharmacokinetics Properties for Catalase by Site-Specific Glycosidation with Aminated Dextran. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1304-1308	4.8	6
27	Enzyme-controlled mesoporous nanosensor for the detection of living Saccharomyces cerevisiae. <i>Sensors and Actuators B: Chemical</i> , 2020 , 303, 127197	8.5	6
26	Glucose-Responsive Enzyme-Controlled Mesoporous Nanomachine with a Layer-by-Layer Supramolecular Architecture <i>ACS Applied Bio Materials</i> , 2019 , 2, 3321-3328	4.1	5
25	Improved pharmacokinetics and stability properties of catalase by chemical glycosidation with end-group activated dextran. <i>Journal of Applied Polymer Science</i> , 2006 , 102, 4573-4576	2.9	5
24	Improved pharmacological properties for superoxide dismutase modified with beta-cyclodextrin-carboxymethylcellulose polymer. <i>Biotechnology Letters</i> , 2006 , 28, 1465-70	3	5
23	Supramolecular Chemistry of Cyclodextrins in Cuba. Supramolecular Chemistry, 2003, 15, 161-170	1.8	5
22	Vapor sensing and interface properties of reduced graphene oxidepoly(methyl methacrylate) nanocomposite. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 2908-2919	2.1	5
21	A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme-Mediated Detachment of Labeled Reporters: The Example of Urea Detection. <i>Chemistry - A European Journal</i> , 2019 , 25, 3575-3581	4.8	5

(2021-2019)

20	A L-glutamate-responsive delivery system based on enzyme-controlled self-immolative arylboronate-gated nanoparticles. <i>Organic Chemistry Frontiers</i> , 2019 , 6, 1058-1063	5.2	4
19	Glycosidation of trypsin with end-group activated dextran. <i>Process Biochemistry</i> , 2006 , 41, 1155-1159	4.8	4
18	Impact of supramolecular interactions of dextran-Ecyclodextrin polymers on invertase activity in freeze-dried systems. <i>Biotechnology Progress</i> , 2015 , 31, 791-8	2.8	3
17	Functionalized carbon nanotubes decorated with fluorine-doped titanium dioxide nanoparticles on silicon substrate as template for titanium dioxide film photo-anode grown by chemical vapour deposition. <i>Thin Solid Films</i> , 2018 , 656, 30-36	2.2	3
16	Reduced graphene oxidepoly(methyl methacrylate) nanocomposite as a supercapacitor. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 46685	2.9	3
15	An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. <i>Angewandte Chemie</i> , 2019 , 131, 15128-15132	3.6	3
14	Gold surface patterned with cyclodextrin-based molecular nanopores for electrochemical assay of transglutaminase activity. <i>Electrochemistry Communications</i> , 2014 , 40, 13-16	5.1	2
13	Electroanalytical Methods Based on Hybrid Nanomaterials 2015 , 1-18		2
12	International conference on enzyme technology R ELATENZ Q 005 \(\Pi\) <i>Enzyme and Microbial Technology</i> , 2007 , 40, 381	3.8	2
11	Biospecific immobilisation of mannan-modified hmylase on Concanavalin A Sepharose. <i>International Journal of Biotechnology</i> , 2004 , 6, 385	O	2
10	Enhanced photoconversion efficiency of hybrid TiO2/nox-MWCNT/Si photoanode for water splitting in neutral medium. <i>Materials Letters</i> , 2021 , 285, 129128	3.3	2
9	Sucrose-Responsive Intercommunicated Janus Nanoparticles Network. <i>Nanomaterials</i> , 2021 , 11,	5.4	2
8	Biotin-Labeled Electropolymerized Network of Gold Nanoparticles for Amperometric Immunodetection of Human Fibrinogen. <i>ChemElectroChem</i> , 2014 , 1, 200-206	4.3	1
7	Pharmacokinetics and stability properties of catalase modified with water-soluble polysaccharides. <i>Archiv Der Pharmazie</i> , 2006 , 339, 372-7	4.3	1
6	A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation. <i>Chemical Communications</i> , 2020 , 56, 9974-9977	5.8	1
5	Nickel oxide nanoparticles-modified glassy carbon electrodes for non-enzymatic determination of total sugars in commercial beverages. <i>Microchemical Journal</i> , 2020 , 159, 105538	4.8	1
4	A glutathione disulfide-sensitive Janus nanomachine controlled by an enzymatic AND logic gate for smart delivery. <i>Nanoscale</i> , 2021 , 13, 18616-18625	7.7	1
3	Hybrid magnetic nanoparticles for electrochemical biosensors 2021 , 679-720		O

- Nanoparticle-Modified Electrodes for Sensing **2014**, 47-87
- Electroanalytical Methods Based on Hybrid Nanomaterials **2019**, 1-22