Jonathon Noe Joseph Pines

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4898324/publications.pdf

Version: 2024-02-01

75 papers 12,065 citations

51 h-index 76769 74 g-index

79 all docs

79 docs citations

79 times ranked

9644 citing authors

#	Article	IF	CITATIONS
1	Cell cycle-dependent binding between Cyclin B1 and Cdk1 revealed by time-resolved fluorescence correlation spectroscopy. Open Biology, 2022, 12, .	1.5	10
2	Reviewers in 2020. Open Biology, 2021, 11, 210040.	1.5	O
3	Spindle assembly checkpoint activation and silencing at kinetochores. Seminars in Cell and Developmental Biology, 2021, 117, 86-98.	2.3	125
4	Image integrity and standards. Open Biology, 2020, 10, 200165.	1.5	10
5	Reviewers in 2019. Open Biology, 2020, 10, 200071.	1.5	O
6	Cyclin B1-Cdk1 facilitates MAD1 release from the nuclear pore to ensure a robust spindle checkpoint. Journal of Cell Biology, 2020, 219, .	2.3	35
7	Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis. Journal of Cell Biology, 2018, 217, 179-193.	2.3	59
8	Assays for the spindle assembly checkpoint in cell culture. Methods in Cell Biology, 2018, 144, 1-13.	0.5	4
9	Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nature Genetics, 2017, 49, 1148-1151.	9.4	111
10	Delayed APC/C activation extends the first mitosis of mouse embryos. Scientific Reports, 2017, 7, 9682.	1.6	10
11	The Mitotic Checkpoint Complex Requires an Evolutionary Conserved Cassette to Bind and Inhibit Active APC/C. Molecular Cell, 2016, 64, 1144-1153.	4.5	43
12	The ABBA Motif Binds APC/C Activators and Is Shared by APC/C Substrates and Regulators. Developmental Cell, 2015, 32, 358-372.	3.1	172
13	The Biochemistry of Mitosis. Cold Spring Harbor Perspectives in Biology, 2015, 7, a015776.	2.3	47
14	A PP1–PP2A phosphatase relay controls mitotic progression. Nature, 2015, 517, 94-98.	13.7	162
15	The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature, 2015, 517, 631-634.	13.7	170
16	Co-activator independent differences in how the metaphase and anaphase APC/C recognise the same substrate. Biology Open, 2014, 3, 904-912.	0.6	9
17	Torin1 mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells. Journal of Cell Science, 2014, 127, 1346-56.	1.2	37
18	Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C–Cdc20 complex. EMBO Journal, 2013, 32, 303-314.	3.5	61

#	Article	IF	CITATIONS
19	The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nature Cell Biology, 2013, 15, 1378-1385.	4.6	192
20	Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation. Journal of Cell Biology, 2012, 199, 27-37.	2.3	71
21	Human Mob1 proteins are required for cytokinesis by controlling microtubule stability. Journal of Cell Science, 2012, 125, 3085-90.	1.2	30
22	A red light in mitosis. Nature Reviews Molecular Cell Biology, 2012, 13, 482-482.	16.1	1
23	APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nature Cell Biology, 2011, 13, 1234-1243.	4.6	139
24	Quantitative Proteomics Reveals the Basis for the Biochemical Specificity of the Cell-Cycle Machinery. Molecular Cell, 2011, 43, 406-417.	4.5	127
25	How APC/C–Cdc20 changes its substrate specificity inÂmitosis. Nature Cell Biology, 2011, 13, 223-233.	4.6	100
26	Cubism and the cell cycle: the many faces of the APC/C. Nature Reviews Molecular Cell Biology, 2011, 12, 427-438.	16.1	332
27	The Renaissance or the cuckoo clock. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3625-3634.	1.8	19
28	Centromere tension: a divisive issue. Nature Cell Biology, 2010, 12, 919-923.	4.6	79
29	How cyclin A destruction escapes the spindle assembly checkpoint. Journal of Cell Biology, 2010, 190, 501-509.	2.3	88
30	Activation of cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. Journal of Cell Biology, 2010, 189, 247-259.	2.3	248
31	Progressive Activation of CyclinB1-Cdk1 Coordinates Entry to Mitosis. Developmental Cell, 2010, 18, 533-543.	3.1	695
32	Escaping the firing squad: acetylation of BubR1 protects it from degradation in checkpoint cells. EMBO Journal, 2009, 28, 1991-1993.	3.5	7
33	UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nature Cell Biology, 2009, 11, 1363-1369.	4.6	217
34	The APC/C: A Smörgåsbord for Proteolysis. Molecular Cell, 2009, 34, 135-136.	4.5	12
35	Defining the role of Emi1 in the DNA replication–segregation cycle. Chromosoma, 2008, 117, 333-338.	1.0	27
36	Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature, 2008, 451, 81-85.	13.7	367

#	Article	lF	Citations
37	The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nature Cell Biology, 2008, 10, 1411-1420.	4.6	270
38	APC/CCdh1 Targets Aurora Kinase to Control Reorganization of the Mitotic Spindle at Anaphase. Current Biology, 2008, 18, 1649-1658.	1.8	120
39	Cdc20 and Cks Direct the Spindle Checkpoint-Independent Destruction of Cyclin A. Molecular Cell, 2008, 30, 290-302.	4.5	165
40	UbcH10 has a rate-limiting role in G1 phase but might not act in the spindle checkpoint or as part of an autonomous oscillator. Journal of Cell Science, 2008, 121, 2319-2326.	1.2	37
41	Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. Journal of Cell Biology, 2007, 177, 425-437.	2.3	116
42	The Centrosome Opens the Way to Mitosis. Developmental Cell, 2007, 12, 475-477.	3.1	12
43	Mitosis: a matter of getting rid of the right protein at the right time. Trends in Cell Biology, 2006, 16, 55-63.	3.6	229
44	The anaphase-promoting complex/cyclosome: APC/C. Journal of Cell Science, 2006, 119, 2401-2404.	1.2	108
45	Proteolysis: anytime, any place, anywhere?. Nature Cell Biology, 2005, 7, 731-735.	4.6	71
46	Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. Journal of Cell Biology, 2004, 164, 233-241.	2.3	312
47	The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nature Cell Biology, 2004, 6, 892-898.	4.6	94
48	Human replication protein Cdc6 prevents mitosis through a checkpoint mechanism that implicates Chk1. EMBO Journal, 2003, 22, 704-712.	3.5	80
49	Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO Journal, 2003, 22, 6598-6609.	3.5	344
50	Active cyclin B1–Cdk1 first appears on centrosomes in prophase. Nature Cell Biology, 2003, 5, 143-148.	4.6	540
51	Characterization and Expression of Mammalian Cyclin B3, a Prepachytene Meiotic Cyclin. Journal of Biological Chemistry, 2002, 277, 41960-41969.	1.6	117
52	Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. Journal of Cell Biology, 2002, 157, 1125-1137.	2.3	284
53	Use of Green Fluorescent Protein in Mouse Embryos. Methods, 2001, 24, 55-60.	1.9	12
54	Re-staging mitosis: a contemporary view of mitotic progression. Nature Cell Biology, 2001, 3, E3-E6.	4.6	143

#	Article	IF	Citations
55	The Localization of Human Cyclins B1 and B2 Determines Cdk1 Substrate Specificity and Neither Enzyme Requires Mek to Disassemble the Golgi Apparatus. Journal of Cell Biology, 2001, 152, 945-958.	2.3	119
56	Cyclin a Is Destroyed in Prometaphase and Can Delay Chromosome Alignment and Anaphase. Journal of Cell Biology, 2001, 153, 121-136.	2.3	335
57	Cdc25b and Cdc25c Differ Markedly in Their Properties as Initiators of Mitosis. Journal of Cell Biology, 1999, 146, 573-584.	2.3	161
58	Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biology, 1999, 1, 82-87.	4.6	640
59	Four-dimensional control of the cell cycle. Nature Cell Biology, 1999, 1, E73-E79.	4.6	349
60	Checkpoint on the nuclear frontier. Nature, 1999, 397, 104-105.	13.7	56
61	Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Current Biology, 1999, 9, 680-689.	1.8	236
62	MPF localization is controlled by nuclear export. EMBO Journal, 1998, 17, 4127-4138.	3.5	318
63	Localization of cell cycle regulators by immunofluorescence. Methods in Enzymology, 1997, 283, 99-113.	0.4	21
64	Cyclin-dependent kinase inhibitors: the age of crystals. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1332, M39-M42.	3.3	10
65	Cell cycle: Reaching for a role for the Cks proteins. Current Biology, 1996, 6, 1399-1402.	1.8	128
66	GFP in mammalian cells. Trends in Genetics, 1995, 11, 326-327.	2.9	106
67	Arresting developments in cell-cycle control. Trends in Biochemical Sciences, 1994, 19, 143-145.	3.7	74
68	Clear as crystal?. Current Biology, 1993, 3, 544-547.	1.8	26
69	A cyclin A-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin A complex. Cell, 1992, 68, 167-176.	13.5	395
70	c-mos proto-oncogene product is partly degraded after release from meiotic arrest and persists during interphase in mouse zygotes. Developmental Biology, 1991, 148, 393-397.	0.9	74
71	Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell, 1991, 65, 1243-1253.	13.5	407
72	Cyclins and cancer. Cell, 1991, 66, 1071-1074.	13.5	448

#	Article	IF	CITATIONS
73	Cyclin-dependent kinases: a new cell cycle motif?. Trends in Cell Biology, 1991, 1, 117-121.	3.6	146
74	Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell, 1989, 58, 833-846.	13.5	946
75	Cyclin synthesis, modification and destruction during meiotic maturation of the starfish oocyte. Developmental Biology, 1987, 124, 248-258.	0.9	191