
Ankur R Desai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4897847/publications.pdf Version: 2024-02-01

ANKIID P DESAL

#	Article	IF	CITATIONS
1	Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 2007, 147, 209-232.	4.8	744
2	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	5.3	646
3	Terrestrial biosphere models need better representation of vegetation phenology: results from the <scp>N</scp> orth <scp>A</scp> merican <scp>C</scp> arbon <scp>P</scp> rogram <scp>S</scp> ite <scp>S</scp> ynthesis. Global Change Biology, 2012, 18, 566-584.	9.5	583
4	Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1908-1925.	6.3	562
5	Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sensing of Environment, 2010, 114, 1416-1431.	11.0	475
6	Effects of biotic disturbances on forest carbon cycling in the <scp>U</scp> nited <scp>S</scp> tates and <scp>C</scp> anada. Global Change Biology, 2012, 18, 7-34.	9.5	418
7	Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research, 2010, 115, .	3.3	395
8	Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5880-5885.	7.1	340
9	A modelâ€data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	274
10	Solarâ€induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCOâ€2 and flux tower observations. Global Change Biology, 2018, 24, 3990-4008.	9.5	264
11	Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. Agricultural and Forest Meteorology, 2005, 128, 33-55.	4.8	248
12	Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology, 2008, 148, 821-838.	4.8	248
13	A modelâ€data intercomparison of CO ₂ exchange across North America: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2010, 115, .	3.3	247
14	Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA. Agricultural and Forest Meteorology, 2004, 126, 271-295.	4.8	233
15	ECOSTRESS: NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station. Water Resources Research, 2020, 56, e2019WR026058.	4.2	220
16	Lakeâ€size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters, 2012, 39, .	4.0	199
17	CO⁢sub>2⁢/sub>, CO, and CH⁢sub>4⁢/sub> measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmospheric Measurement Techniques, 2014, 7,	3.1	199
18	How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?. Scientific Reports, 2014, 4, 7483.	3.3	181

#	Article	IF	CITATIONS
19	The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4594-4599.	7.1	171
20	Drought and Deforestation: Has Land Cover Change Influenced Recent Precipitation Extremes in the Amazon?. Journal of Climate, 2014, 27, 345-361.	3.2	160
21	Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Global Change Biology, 2011, 17, 1193-1211.	9.5	151
22	Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, 2018, 8, 1092-1096.	18.8	145
23	Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Global Change Biology, 2010, 16, 696-710.	9.5	144
24	Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Global Ecology and Biogeography, 2013, 22, 994-1006.	5.8	144
25	The AmeriFlux network: A coalition of the willing. Agricultural and Forest Meteorology, 2018, 249, 444-456.	4.8	140
26	Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 2010, 5, 034007.	5.2	137
27	Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy. Remote Sensing of Environment, 2015, 167, 78-87.	11.0	137
28	Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 2021, 301-302, 108350.	4.8	125
29	Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nature Geoscience, 2009, 2, 855-858.	12.9	121
30	Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 2012, 194, 775-783.	7.3	111
31	Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	108
32	Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling. Agricultural and Forest Meteorology, 2008, 148, 288-308.	4.8	106
33	Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nature Climate Change, 2020, 10, 555-560.	18.8	106
34	Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests. Biogeosciences, 2009, 6, 1115-1126.	3.3	101
35	First direct measurements of formaldehyde flux via eddy covariance: implications for missing in-canopy formaldehyde sources. Atmospheric Chemistry and Physics, 2011, 11, 10565-10578.	4.9	101
36	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	27.8	99

#	Article	IF	CITATIONS
37	The imprint of surface fluxes and transport on variations in total column carbon dioxide. Biogeosciences, 2012, 9, 875-891.	3.3	98
38	Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites. Global Change Biology, 2020, 26, 6916-6930.	9.5	97
39	Evaluation of leafâ€ŧoâ€canopy upscaling methodologies against carbon flux data in North America. Journal of Geophysical Research, 2012, 117, .	3.3	92
40	A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 286-300.	3.0	92
41	Ecosystem respiration and its components in an old-growth forest in the Great Lakes region of the United States. Agricultural and Forest Meteorology, 2008, 148, 171-185.	4.8	91
42	Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2. Agricultural and Forest Meteorology, 2009, 149, 1919-1930.	4.8	91
43	Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecology Letters, 2013, 16, 731-737.	6.4	90
44	Data-driven diagnostics of terrestrial carbon dynamics over North America. Agricultural and Forest Meteorology, 2014, 197, 142-157.	4.8	88
45	The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling. Plant and Soil, 2017, 413, 1-25.	3.7	81
46	CO ₂ fluxes at northern fens and bogs have opposite responses to interâ€annual fluctuations in water table. Geophysical Research Letters, 2010, 37, .	4.0	79
47	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	9.9	79
48	A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC). Oecologia, 2011, 167, 599-611.	2.0	74
49	Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape. Journal of Geophysical Research, 2010, 115, .	3.3	73
50	Relationship Between Dynamic Balance Measures and Functional Performance in Community-Dwelling Elderly People. Physical Therapy, 2010, 90, 748-760.	2.4	72
51	Effects of land cover change on moisture availability and potential crop yield in the world's breadbaskets. Environmental Research Letters, 2012, 7, 014009.	5.2	69
52	Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several landâ€surface models: An NACP analysis. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1458-1473.	3.0	69
53	The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land–Atmosphere CO ₂ Exchange. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 6517-6532.	6.3	69
54	Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, 2019, 11, 1263-1289.	9.9	69

#	Article	IF	CITATIONS
55	Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters, 2018, 13, 124018.	5.2	67
56	Using Light-Use and Production Efficiency Models to Predict Photosynthesis and Net Carbon Exchange During Forest Canopy Disturbance. Ecosystems, 2008, 11, 26-44.	3.4	65
57	Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Global Change Biology, 2017, 23, 3231-3248.	9.5	65
58	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	9.9	65
59	Landscape-level terrestrial methane flux observed from a very tall tower. Agricultural and Forest Meteorology, 2015, 201, 61-75.	4.8	61
60	Shortâ€ŧerm favorable weather conditions are an important control of interannual variability in carbon and water fluxes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2186-2198.	3.0	60
61	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	9.5	59
62	Upscaling tower-observed turbulent exchange at fine spatio-temporal resolution using environmental response functions. Agricultural and Forest Meteorology, 2017, 232, 10-22.	4.8	57
63	Observed covariance between ecosystem carbon exchange and atmospheric boundary layer dynamics at a site in northern Wisconsin. Journal of Geophysical Research, 2004, 109, .	3.3	55
64	Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake. Atmospheric Chemistry and Physics, 2016, 16, 3711-3726.	4.9	54
65	Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources. Global Change Biology, 2015, 21, 1165-1181.	9.5	53
66	Can EVI-derived land-surface phenology be used as a surrogate for phenology of canopy photosynthesis?. International Journal of Remote Sensing, 2014, 35, 1162-1174.	2.9	52
67	Assessing the near surface sensitivity of SCIAMACHY atmospheric CO ₂ retrieved using (FSI) WFM-DOAS. Atmospheric Chemistry and Physics, 2007, 7, 3597-3619.	4.9	50
68	Impact of hydrological variations on modeling of peatland CO ₂ fluxes: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	50
69	COSORE: A community database for continuous soil respiration and other soilâ€atmosphere greenhouse gas flux data. Global Change Biology, 2020, 26, 7268-7283.	9.5	50
70	Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery. Remote Sensing of Environment, 2012, 118, 60-72.	11.0	49
71	Moisture sensitivity of ecosystem respiration: Comparison of 14 forest ecosystems in the Upper Great Lakes Region, USA. Agricultural and Forest Meteorology, 2008, 148, 216-230.	4.8	47
72	The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites. Journal of Geophysical Research, 2011, 116, .	3.3	46

#	Article	IF	CITATIONS
73	Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological dataâ€model integration. Global Change Biology, 2021, 27, 13-26.	9.5	44
74	Redefinition and global estimation of basal ecosystem respiration rate. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	43
75	ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO ₂ , water, and energy fluxes on daily to annual scales. Geoscientific Model Development, 2018, 11, 497-519.	3.6	43
76	Estimating the net ecosystem exchange for the major forests in the northern United States by integrating MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 2012, 156, 75-84.	4.8	41
77	Wetland flux controls: how does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin?. Biogeochemistry, 2018, 137, 15-25.	3.5	40
78	PEAT LSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2130-2162.	3.8	40
79	Connecting Land–Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19. Bulletin of the American Meteorological Society, 2021, 102, E421-E445.	3.3	40
80	Large Uncertainty in Estimating <i>p</i> CO ₂ From Carbonate Equilibria in Lakes. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2909-2924.	3.0	39
81	Large Spatial and Temporal Variability of Carbon Dioxide and Methane in a Eutrophic Lake. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2248-2266.	3.0	39
82	Assessing Interactions Among Changing Climate, Management, and Disturbance in Forests: A Macrosystems Approach. BioScience, 2015, 65, 263-274.	4.9	38
83	Regional carbon fluxes from an observationally constrained dynamic ecosystem model: Impacts of disturbance, CO2fertilization, and heterogeneous land cover. Journal of Geophysical Research, 2007, 112, .	3.3	36
84	Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience, 2021, 14, 484-490.	12.9	35
85	Impact of forest plantation on methane emissions from tropical peatland. Global Change Biology, 2020, 26, 2477-2495.	9.5	34
86	Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications, 2021, 12, 2266.	12.8	34
87	Seasonal pattern of regional carbon balance in the central Rocky Mountains from surface and airborne measurements. Journal of Geophysical Research, 2011, 116, .	3.3	33
88	Partitioning of Net Fluxes. , 2012, , 263-289.		33
89	eddy4RÂ0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Cit, Docker, and HDF5. Geoscientific Model Development, 2017, 10, 3189-3206.	3.6	33
90	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	4.8	33

#	Article	IF	CITATIONS
91	Using imaging spectroscopy to detect variation in terrestrial ecosystem productivity across a waterâ€ s tressed landscape. Ecological Applications, 2018, 28, 1313-1324.	3.8	32
92	Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences, 2012, 9, 4215-4231.	3.3	31
93	Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis. Photosynthesis Research, 2014, 119, 31-47.	2.9	31
94	Temporal Dynamics of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks. Geophysical Research Letters, 2018, 45, 9275-9287.	4.0	31
95	Solarâ€induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes. Global Change Biology, 2019, 25, e4.	9.5	31
96	Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions. Agricultural and Forest Meteorology, 2021, 307, 108509.	4.8	31
97	The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research Letters, 2020, 15, 104004.	5.2	31
98	Soil moisture as an essential component for delineating and forecasting agricultural rather than meteorological drought. Remote Sensing of Environment, 2022, 269, 112833.	11.0	31
99	Thermal adaptation of net ecosystem exchange. Biogeosciences, 2011, 8, 1453-1463.	3.3	30
100	Modelâ€data assimilation of multiple phenological observations to constrain and predict leaf area index. Ecological Applications, 2015, 25, 546-558.	3.8	30
101	A Case Study on the Effects of Heterogeneous Soil Moisture on Mesoscale Boundary-Layer Structure in the Southern Great Plains, U.S.A. Part I: Simple Prognostic Model. Boundary-Layer Meteorology, 2006, 119, 195-238.	2.3	29
102	Interspecific and interannual variation in the duration of spring phenophases in a northern mixed forest. Agricultural and Forest Meteorology, 2017, 243, 55-67.	4.8	29
103	Biological and physical influences on soil ¹⁴ CO ₂ seasonal dynamics in a temperate hardwood forest. Biogeosciences, 2013, 10, 7999-8012.	3.3	28
104	Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes. Environmental Pollution, 2019, 255, 113234.	7.5	28
105	Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 2021, 7, .	10.3	28
106	Climatic controls of interannual variability in regional carbon fluxes from topâ€down and bottomâ€up perspectives. Journal of Geophysical Research, 2010, 115, .	3.3	27
107	Carbon sink and source dynamics of a eutrophic deep lake using multiple flux observations over multiple years. Limnology and Oceanography Letters, 2018, 3, 285-292.	3.9	27
108	Using the red chromatic coordinate to characterize the phenology of forest canopy photosynthesis. Agricultural and Forest Meteorology, 2020, 285-286, 107910.	4.8	27

#	Article	IF	CITATIONS
109	Observed variability of Lake Superior pCO2. Limnology and Oceanography, 2011, 56, 775-786.	3.1	26
110	Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis. Catena, 2021, 201, 105190.	5.0	26
111	A Numerical Case Study of the Implications of Secondary Circulations to the Interpretation of Eddy-Covariance Measurements Over Small Lakes. Boundary-Layer Meteorology, 2017, 165, 311-332.	2.3	24
112	Time dependency of eddy covariance site energy balance. Agricultural and Forest Meteorology, 2018, 249, 467-478.	4.8	23
113	Modeling Soil and Biomass Carbon Responses to Declining Water Table in a Wetland-Rich Landscape. Ecosystems, 2013, 16, 491-507.	3.4	22
114	Non-invasive hyperspectral imaging approach for fruit quality control application and classification: case study of apple, chikoo, guava fruits. Journal of Food Science and Technology, 2015, 52, 6978-6989.	2.8	22
115	Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model. Global Ecology and Biogeography, 2019, 28, 1351-1365.	5.8	22
116	A nonparametric method for separating photosynthesis and respiration components in CO2flux measurements. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	21
117	Evaluation of prediction and forecasting models for evapotranspiration of agricultural lands in the Midwest U.S. Journal of Hydrology, 2021, 600, 126579.	5.4	21
118	A Case Study on the Effects of Heterogeneous Soil Moisture on Mesoscale Boundary-Layer Structure in the Southern Great Plains, U.S.A. Part II: Mesoscale Modelling. Boundary-Layer Meteorology, 2006, 120, 275-314.	2.3	20
119	Assessing filtering of mountaintop CO ₂ mole fractions for application to inverse models of biosphere-atmosphere carbon exchange. Atmospheric Chemistry and Physics, 2012, 12, 2099-2115.	4.9	20
120	Seasonal variations in phenology and productivity of a tropical dry deciduous forest from MODIS and Hyperion. Agricultural and Forest Meteorology, 2015, 214-215, 91-105.	4.8	20
121	Montane ecosystem productivity responds more to global circulation patterns than climatic trends. Environmental Research Letters, 2016, 11, 024013.	5.2	19
122	Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical fluxes from tower-based eddy covariance. Agricultural and Forest Meteorology, 2018, 255, 81-91.	4.8	19
123	Quantifying the effects of harvesting on carbon fluxes and stocks in northern temperate forests. Biogeosciences, 2014, 11, 6667-6682.	3.3	18
124	Significant Reductions in Crop Yields From Air Pollution and Heat Stress in the United States. Earth's Future, 2021, 9, e2021EF002000.	6.3	18
125	Response and biophysical regulation of carbon dioxide fluxes to climate variability and anomaly in contrasting ecosystems in northwestern Ohio, USA. Agricultural and Forest Meteorology, 2016, 220, 50-68.	4.8	17
126	Comparing in-situ leaf observations in early spring with flux tower CO2 exchange, MODIS EVI and modeled LAI in a northern mixed forest. Agricultural and Forest Meteorology, 2019, 278, 107673.	4.8	17

#	Article	IF	CITATIONS
127	A Simple, Minimal Parameter Model for Predicting the Influence of Changing Land Cover on the Land–Atmosphere System+. Earth Interactions, 2011, 15, 1-32.	1.5	16
128	Sustained Analgesia Achieved Through Esterase-Activated Morphine Prodrugs Complexed with PAMAM Dendrimer. Pharmaceutical Research, 2013, 30, 247-256.	3.5	16
129	Satellite Determination of Peatland Water Table Temporal Dynamics by Localizing Representative Pixels of A SWIR-Based Moisture Index. Remote Sensing, 2020, 12, 2936.	4.0	16
130	Can Data Mining Help Eddy Covariance See the Landscape? A Large-Eddy Simulation Study. Boundary-Layer Meteorology, 2020, 176, 85-103.	2.3	15
131	Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions. Atmospheric Chemistry and Physics, 2021, 21, 951-971.	4.9	14
132	Multi‣ensor Approach for High Space and Time Resolution Land Surface Temperature. Earth and Space Science, 2021, 8, e2021EA001842.	2.6	14
133	Seasonality in aerodynamic resistance across a range of North American ecosystems. Agricultural and Forest Meteorology, 2021, 310, 108613.	4.8	14
134	The Phenology of Gross Ecosystem Productivity and Ecosystem Respiration in Temperate Hardwood and Conifer Chronosequences. , 2009, , 59-85.		14
135	Data-based perfect-deficit approach to understanding climate extremes and forest carbon assimilation capacity. Environmental Research Letters, 2014, 9, 065002.	5.2	13
136	Relationship between Snow Extent and Midlatitude Disturbance Centers. Journal of Climate, 2014, 27, 2971-2982.	3.2	13
137	Assessing the interplay between canopy energy balance and photosynthesis with cellulose δ18O: large-scale patterns and independent ground-truthing. Oecologia, 2018, 187, 995-1007.	2.0	13
138	The eddy-covariance storage term in air: Consistent community resources improve flux measurement reliability. Agricultural and Forest Meteorology, 2019, 279, 107734.	4.8	13
139	Trade-Offs in Flux Disaggregation: A Large-Eddy Simulation Study. Boundary-Layer Meteorology, 2019, 170, 69-93.	2.3	13
140	Increasing Dairy Sustainability with Integrated Crop–Livestock Farming. Sustainability, 2020, 12, 765.	3.2	13
141	Monitoring the seasonal and interannual variation of the carbon sequestration in a temperate deciduous forest with MODIS time series data. Forest Ecology and Management, 2013, 306, 150-160.	3.2	12
142	Positive impacts of precipitation intensity on monthly CO2 fluxes in North America. Global and Planetary Change, 2013, 100, 204-214.	3.5	11
143	Retrieving Heterogeneous Surface Soil Moisture at 100 m Across the Globe via Fusion of Remote Sensing and Land Surface Parameters. Frontiers in Water, 2020, 2, .	2.3	11
144	Simultaneous Measurements of O ₃ and HCOOH Vertical Fluxes Indicate Rapid Inâ€Canopy Terpene Chemistry Enhances O ₃ Removal Over Mixed Temperate Forests. Geophysical Research Letters, 2021, 48, e2020GL090996.	4.0	11

#	Article	IF	CITATIONS
145	Clusterâ€Enhanced Ensemble Learning for Mapping Global Monthly Surface Ozone From 2003 to 2019. Geophysical Research Letters, 2022, 49, .	4.0	10
146	Unraveling Forest Complexity: Resource Use Efficiency, Disturbance, and the Structureâ€Function Relationship. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	10
147	Toward a Social-Ecological Theory of Forest Macrosystems for Improved Ecosystem Management. Forests, 2018, 9, 200.	2.1	9
148	Wind Sheltering Impacts on Land-Atmosphere Fluxes Over Fens. Frontiers in Environmental Science, 2019, 7, .	3.3	8
149	Comparing Spatial and Temporal Variation of Lakeâ€Atmosphere Carbon Dioxide Fluxes Using Multiple Methods. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005623.	3.0	8
150	Observations of ¹⁴ CO ₂ in ecosystem respiration from a temperate deciduous forest in Northern Wisconsin. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 600-616.	3.0	7
151	The Importance of Spring Mixing in Evaluating Carbon Dioxide and Methane Flux From a Small Northâ€Temperate Lake in Wisconsin, United States. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006537.	3.0	7
152	The spatial scale dependence of water vapor variability inferred from observations from a very tall tower. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9822-9837.	3.3	6
153	Growth and opportunities in networked synthesis through AmeriFlux. New Phytologist, 2019, 222, 1685-1687.	7.3	6
154	Evaluation of a CONUS-Wide ECOSTRESS DisALEXI Evapotranspiration Product. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10117-10133.	4.9	6
155	Lagged Wetland CH ₄ Flux Response in a Historically Wet Year. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006458.	3.0	6
156	BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. Research Ideas and Outcomes, 0, 7, .	1.0	5
157	Statement of Contribution to Diversity, Equity, and Inclusion for <i>JGR: Biogeosciences</i> . Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
158	How High to Fly? Mapping Evapotranspiration from Remotely Piloted Aircrafts at Different Elevations. Remote Sensing, 2022, 14, 1660.	4.0	5
159	Growing season carbon dynamics differ in intermediate wheatgrass monoculture versus biculture with red clover. Agricultural and Forest Meteorology, 2022, 323, 109062.	4.8	5
160	Lake ice measurements from soil water content reflectometer sensors. Limnology and Oceanography: Methods, 2016, 14, 224-230.	2.0	4
161	Evaluation of Low-Cost, Automated Lake Ice Thickness Measurements. Journal of Atmospheric and Oceanic Technology, 2019, 36, 527-534.	1.3	4
162	Forest Drought Response Index (ForDRI): A New Combined Model to Monitor Forest Drought in the Eastern United States. Remote Sensing, 2020, 12, 3605.	4.0	4

#	Article	IF	CITATIONS
163	Synoptic Meteorology Explains Temperate Forest Carbon Uptake. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005476.	3.0	4
164	Measurements, Modeling, and Scaling of Inland Water Gas Exchange. Eos, 2015, 96, .	0.1	4
165	Site Characteristics Mediate the Relationship Between Forest Productivity and Satellite Measured Solar Induced Fluorescence. Frontiers in Forests and Global Change, 2021, 4, .	2.3	4
166	The influence of carbon exchange of a large lake on regional tracer-transport inversions: results from Lake Superior. Environmental Research Letters, 2011, 6, 034016.	5.2	3
167	Carbon Flux Phenology from the Sky: Evaluation for Maize and Soybean. Journal of Atmospheric and Oceanic Technology, 2018, 35, 877-892.	1.3	3
168	Geospatial coherence of surface-atmosphere fluxes in the upper Great Lakes region. Agricultural and Forest Meteorology, 2020, 295, 108188.	4.8	3
169	Novel approach to observing system simulation experiments improves information gain of surface–atmosphere field measurements. Atmospheric Measurement Techniques, 2021, 14, 6929-6954.	3.1	3
170	Your Science Is Your (Openly Shared) Data. Eos, 2016, 97, .	0.1	2
171	NCAR Advanced Study Program Students "Method Hop―Their Way to Regional Biogeochemistry. Bulletin of the American Meteorological Society, 2008, 89, 1571-1574.	3.3	1
172	Comparison of multiple models for remote sensing of carbon exchange using MODIS data in conifer-dominated forests. International Journal of Remote Sensing, 2014, 35, 8252-8271.	2.9	1
173	Quantifying Seasonal Patterns in Disparate Environmental Variables Using the PolarMetrics R Package. , 2017, , .		1
174	Automated Integration of Continental-Scale Observations in Near-Real Time for Simulation and Analysis of Biosphere–Atmosphere Interactions. Communications in Computer and Information Science, 2020, , 204-225.	0.5	1
175	Diagnosing the Influence of a Receding Snow Boundary on Simulated Midlatitude Cyclones Using Piecewise Potential Vorticity Inversion. Monthly Weather Review, 2020, 148, 4479-4495.	1.4	1
176	Letter of Appreciation to Our 2021 Reviewers. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	1
177	Evaluation of Satellite-Derived Signatures for Three Verified Hailstorms in Central Argentina. Meteorology, 2022, 1, 183-210.	1.1	1
178	Past to Present: An Update to the Aims and Scope of <i>JGR</i> : <i>Biogeosciences</i> . Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	1
179	Parameter sensitivity analysis of disk drive head load control system. Microsystem Technologies, 2009, 15, 1657-1662.	2.0	0
180	Peer review report 2 On "Climate change, phenology, and phenological control of vegetation feedbacks to the climate system― Agricultural and Forest Meteorology, 2015, 201, 213.	4.8	0

#	Article	IF	CITATIONS
181	Peer review report 2 On "Measuring soil frost depth in forest ecosystems with ground penetrating radar― Agricultural and Forest Meteorology, 2015, 201, 454.	4.8	0
182	Peer review report 2 On "Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest― Agricultural and Forest Meteorology, 2015, 201, 256-257.	4.8	0
183	Peer reviewer recognition for 2014. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1471-1474.	3.0	0
184	Thank You to Our 2019 Reviewers. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005700.	3.0	0
185	Letter of Appreciation to Our 2020 Reviewers in the Time of COVIDâ€19. Journal of Geophysical Research C: Biogeosciences, 2021, 126, e2021JG006261.	3.0	0
186	Thawing Permafrost: Monitored, Quantified, Predicted. Eos, 2017, 98, .	0.1	0
187	lt's So UnFAIR!. Eos, 2018, 99, .	0.1	0
188	Tree Cover and Diversity Modulate the Response of Carbon Storage to Precipitation Variability in an Indian Semi-Arid Forest. Current Science, 2021, 119, 1517.	0.8	0
189	Diagnosing discrepancies between observations and models of surface energy fluxes in a mid-latitude lake. Journal of Hydrometeorology, 2022, , .	1.9	0