

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4897827/publications.pdf Version: 2024-02-01



CAC3 Éx

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. International Journal of Biological Macromolecules, 2017, 99, 483-491.                                                                   | 3.6 | 111       |
| 2  | Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites. Food Chemistry, 2017, 218, 221-230.                                                                                                                                                 | 4.2 | 105       |
| 3  | Effects and mechanism of modified starches on the gel properties of myofibrillar protein from grass carp. International Journal of Biological Macromolecules, 2014, 64, 17-24.                                                                                                     | 3.6 | 97        |
| 4  | Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles<br>dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis. Ultrasonics Sonochemistry,<br>2018, 42, 823-831.                                                 | 3.8 | 85        |
| 5  | Hierarchical structure and slowly digestible features of rice starch following microwave cooking with storage. Food Chemistry, 2019, 295, 475-483.                                                                                                                                 | 4.2 | 76        |
| 6  | Capacity of myofibrillar protein to adsorb characteristic fishy-odor compounds: Effects of<br>concentration, temperature, ionic strength, pH and yeast glucan addition. Food Chemistry, 2021, 363,<br>130304.                                                                      | 4.2 | 69        |
| 7  | Chemical interactions and gel properties of black carp actomyosin affected by MTGase and their relationships. Food Chemistry, 2016, 196, 1180-1187.                                                                                                                                | 4.2 | 67        |
| 8  | Effect of phosphates on gelling characteristics and water mobility of myofibrillar protein from grass carp (Ctenopharyngodon idellus). Food Chemistry, 2019, 272, 84-92.                                                                                                           | 4.2 | 66        |
| 9  | Structure, molecular conformation, and immunomodulatory activity of four polysaccharide<br>fractions from Lignosus rhinocerotis sclerotia. International Journal of Biological Macromolecules,<br>2017, 94, 423-430.                                                               | 3.6 | 59        |
| 10 | Gel properties of myofibrillar protein as affected by gelatinization and retrogradation behaviors of<br>modified starches with different crosslinking and acetylation degrees. Food Hydrocolloids, 2019, 96,<br>604-616.                                                           | 5.6 | 51        |
| 11 | Effect of micro- and nano-starch on the gel properties, microstructure and water mobility of myofibrillar protein from grass carp. Food Chemistry, 2022, 366, 130579.                                                                                                              | 4.2 | 50        |
| 12 | Rheological behaviors of an exopolysaccharide from fermentation medium of a Cordyceps sinensis<br>fungus (Cs-HK1). Carbohydrate Polymers, 2014, 114, 506-513.                                                                                                                      | 5.1 | 48        |
| 13 | A comb-like branched β-d-glucan produced by a Cordyceps sinensis fungus and its protective effect<br>against cyclophosphamide-induced immunosuppression in mice. Carbohydrate Polymers, 2016, 142,<br>259-267.                                                                     | 5.1 | 45        |
| 14 | Water-soluble yeast β‑glucan fractions with different molecular weights: Extraction and separation by acidolysis assisted-size exclusion chromatography and their association with proliferative activity. International Journal of Biological Macromolecules, 2019, 123, 269-279. | 3.6 | 41        |
| 15 | Structural and biochemical properties of silver carp surimi as affected by comminution method. Food Chemistry, 2019, 287, 85-92.                                                                                                                                                   | 4.2 | 40        |
| 16 | Influence of Lactobacillus/Candida fermentation on the starch structure of rice and the related noodle features. International Journal of Biological Macromolecules, 2019, 121, 882-888.                                                                                           | 3.6 | 40        |
| 17 | Effects of vacuum chopping on physicochemical and gelation properties of myofibrillar proteins from silver carp (Hypophthalmichthys molitrix). Food Chemistry, 2018, 245, 557-563.                                                                                                 | 4.2 | 39        |
| 18 | Effects and mechanisms of ultrasound- and alkali-assisted enzymolysis on production of water-soluble yeast l²-glucan. Bioresource Technology, 2019, 273, 394-403.                                                                                                                  | 4.8 | 39        |

Ç≜dz É»"

| #  | Article                                                                                                                                                                                                                                     | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In situ synthesis of silver nanoparticles dispersed or wrapped by a Cordyceps sinensis<br>exopolysaccharide in water and their catalytic activity. RSC Advances, 2015, 5, 69790-69799.                                                      | 1.7 | 33        |
| 20 | An insight into the multi-scale structures and pasting behaviors of starch following citric acid treatment. International Journal of Biological Macromolecules, 2018, 116, 793-800.                                                         | 3.6 | 33        |
| 21 | Adsorption kinetics and thermodynamics of yeast β-glucan for off-odor compounds in silver carp mince. Food Chemistry, 2020, 319, 126232.                                                                                                    | 4.2 | 33        |
| 22 | Effects of different recovered sarcoplasmic proteins on the gel performance, water distribution and network structure of silver carp surimi. Food Hydrocolloids, 2022, 131, 107835.                                                         | 5.6 | 33        |
| 23 | Supramolecular structure and pasting/digestion behaviors of rice starches following concurrent<br>microwave and heat moisture treatment. International Journal of Biological Macromolecules, 2019,<br>135, 437-444.                         | 3.6 | 31        |
| 24 | Effects of wet-media milling on multi-scale structures and in vitro digestion of tapioca starch and the structure-digestion relationship. Carbohydrate Polymers, 2022, 284, 119176.                                                         | 5.1 | 30        |
| 25 | A hyperbranched β-d-glucan with compact coil conformation from Lignosus rhinocerotis sclerotia.<br>Food Chemistry, 2017, 225, 267-275.                                                                                                      | 4.2 | 29        |
| 26 | Selenium release kinetics and mechanism from Cordyceps sinensis exopolysaccharide-selenium<br>composite nanoparticles in simulated gastrointestinal conditions. Food Chemistry, 2021, 350, 129223.                                          | 4.2 | 28        |
| 27 | Effects of nano fish bone on gelling properties of tofu gel coagulated by citric acid. Food Chemistry, 2020, 332, 127401.                                                                                                                   | 4.2 | 25        |
| 28 | Gelling properties of silver carp surimi incorporated with konjac glucomannan: Effects of<br>deacetylation degree. International Journal of Biological Macromolecules, 2021, 191, 925-933.                                                  | 3.6 | 24        |
| 29 | Studies on the Binding Interactions of Grass Carp (Ctenopharyngodon idella) Myosin with<br>Chlorogenic Acid and Rosmarinic Acid. Food and Bioprocess Technology, 2020, 13, 1421-1434.                                                       | 2.6 | 20        |
| 30 | A polysaccharide from Lignosus rhinocerotis sclerotia: Self-healing properties and the effect of temperature on its rheological behavior. Carbohydrate Polymers, 2021, 267, 118223.                                                         | 5.1 | 17        |
| 31 | Chitosanâ€glucose Maillard reaction products and their preservative effects on fresh grass carp<br>( <i>Ctenopharyngodon idellus</i> ) fillets during cold storage. Journal of the Science of Food and<br>Agriculture, 2019, 99, 2158-2164. | 1.7 | 16        |
| 32 | Structure and physicochemical properties of cross-linked and acetylated tapioca starches affected by oil modification. Food Chemistry, 2022, 386, 132848.                                                                                   | 4.2 | 16        |
| 33 | Different molecular sizes and chain conformations of water-soluble yeast β-glucan fractions and their interactions with receptor Dectin-1. Carbohydrate Polymers, 2021, 273, 118568.                                                        | 5.1 | 14        |
| 34 | Texture and flavor characteristics of rice cake fermented by Brettanomyces custersii ZSM-001. Journal of Food Science and Technology, 2015, 52, 7113-7122.                                                                                  | 1.4 | 13        |
| 35 | Rheological properties and critical concentrations of a hyperbranched polysaccharide from Lignosus rhinocerotis sclerotia. International Journal of Biological Macromolecules, 2022, 202, 46-54.                                            | 3.6 | 13        |
| 36 | Structure, size and aggregated morphology of a β-D-glucan from Lignosus rhinocerotis as affected by ultrasound. Carbohydrate Polymers, 2021, 269, 118344.                                                                                   | 5.1 | 12        |

Ç<sup>♣</sup>dz É»"

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mechanism on releasing and solubilizing of fish bone calcium during nanoâ€milling. Journal of Food<br>Process Engineering, 2020, 43, e13354.                                                                                                | 1.5 | 10        |
| 38 | Structure characteristics, solution properties and morphology of oxidized yeast β-glucans derived from controlled TEMPO-mediated oxidation. Carbohydrate Polymers, 2020, 250, 116924.                                                       | 5.1 | 9         |
| 39 | Gelling properties of silver carp surimi as affected by different comminution methods: blending and shearing. Journal of the Science of Food and Agriculture, 2019, 99, 3926-3932.                                                          | 1.7 | 8         |
| 40 | Comparative study on molecular size, multiâ€branched structure, and chain conformation of<br>amylopectins from three rice cultivars. Starch/Staerke, 2014, 66, 841-848.                                                                     | 1.1 | 4         |
| 41 | Fabrication and characterization of electrospun nanofibers of Hypophthalmichthys molitrix<br>sarcoplasmic protein recovered by acidâ€chitosan flocculation coupling treatment. Journal of Applied<br>Polymer Science, 2021, 138, 51472.     | 1.3 | 4         |
| 42 | Yeast Î <sup>2</sup> -glucan with different degrees of oxidation: Capability of adsorbing lead ions and protective effect against lead-induced PC12 cytotoxicity. International Journal of Biological Macromolecules, 2022, 208, 1063-1071. | 3.6 | 1         |
| 43 | Effects of repeated deboning on structure, composition, and gelling properties of silver carp surimi.<br>Journal of the Science of Food and Agriculture, 2022, , .                                                                          | 1.7 | 1         |