
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4897768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A conceptual basis for feature engineering. Journal of Systems and Software, 1999, 49, 3-15.	4.5	178
2	Modeling and improving an industrial software process. IEEE Transactions on Software Engineering, 1995, 21, 440-454.	5.6	76
3	A Survey on Open Source Software Trustworthiness. IEEE Software, 2011, 28, 67-75.	1.8	52
4	OpenBQR: a framework for the assessment of OSS. International Federation for Information Processing, 2007, , 173-186.	0.4	48
5	Algres: an advanced database system for complex applications. IEEE Software, 1990, 7, 68-78.	1.8	28
6	Applying GQM in an industrial software factory. ACM Transactions on Software Engineering and Methodology, 1998, 7, 411-448.	6.0	28
7	A Case Study in COSMIC Functional Size Measurement: The Rice Cooker Revisited. Lecture Notes in Computer Science, 2009, , 101-121.	1.3	26
8	Open Source Software Evaluation, Selection, and Adoption: a Systematic Literature Review. , 2020, , .		24
9	SystemC/C-based model-driven design for embedded systems. Transactions on Embedded Computing Systems, 2009, 8, 1-37.	2.9	23
10	Quality of Open Source Software: The QualiPSo Trustworthiness Model. IFIP Advances in Information and Communication Technology, 2009, , 199-212.	0.7	23
11	Providing automated support for the GQM measurement process. IEEE Software, 2000, 17, 56-62.	1.8	22
12	An empirical investigation of perceived reliability of open source Java programs. , 2012, , .		22
13	Combining Problem Frames and UML in the Description of Software Requirements. Lecture Notes in Computer Science, 2006, , 199-213.	1.3	21
14	Model-based functional size measurement. , 2008, , .		20
15	The QualiSPo approach to OSS product quality evaluation. , 2010, , .		20
16	On the assessment of software defect prediction models via ROC curves. Empirical Software Engineering, 2020, 25, 3977-4019.	3.9	20
17	Combining UML and formal notations for modelling real-time systems. , 2001, , .		19
18	Applying SCRUM in an OSS Development Process: An Empirical Evaluation. Lecture Notes in Business Information Processing, 2010, , 147-159.	1.0	19

IF ARTICLE CITATIONS Combining UML and formal notations for modelling real-time systems. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / AČM, 2001, 26, 196-206. Introducing the evaluation of complexity in functional size measurement., 2010, , . 20 18 An Investigation of the Users' Perception of OSS Quality. International Federation for Information 0.4 Processing, 2010, , 15-28. Requirements-Based Estimation of Change Costs. Empirical Software Engineering, 2000, 5, 229-243. 22 3.9 16 Predicting OSS trustworthiness on the basis of elementary code assessment., 2010, , . 16 Bridging the gap between requirements and design: An approach based on Problem Frames and SysML. 24 4.5 16 Journal of Systems and Software, 2012, 85, 717-745. Model-based early and rapid estimation of COSMIC functional size $\hat{a} \in An$ experimental evaluation. Information and Software Technology, 2014, 56, 1253-1267. 4.4 Convertibility of Function Points into COSMIC Function Points: A study using Piecewise Linear 26 4.4 15 Regression. Information and Software Technology, 2011, 53, 874-884. On the definition of dynamic software measures., 2012,,. Towards a simplified definition of Function Points. Information and Software Technology, 2013, 55, 28 4.4 15 1796-1809. Using function points to measure and estimate real-time and embedded software: Experiences and 14 guidelines. , 2009, , . A study on the statistical convertibility of IFPUG Function Point, COSMIC Function Point and Simple 30 4.4 13 Function Point. Information and Software Technology, 2017, 86, 1-19. Automated Measurement of UML Models: an open toolset approach.. Journal of Object Technology, 2005, 4, 115. Automated support for process-aware definition and execution of measurement plans., 2005, , . 32 12 A Study on OSS Marketing and Communication Strategies. International Federation for Information Processing, 2012, , 338-343. An Evaluation of Simple Function Point as a Replacement of IFPUG Function Point., 2014,,. 34 10 Beyond Total Cost of Ownership: Applying Balanced Scorecards to Open-Source Software., 2007, , .

36 Convertibility of functional size measurements., 2009,,.

#

LUIGI LAVAZZA

#	Article	IF	Citations
37	The role of the measure of functional complexity in effort estimation. , 2010, , .		9
38	An experience in process assessment. , 1995, , .		8
39	A fine-grained process modelling experiment at British Airways. Software Process Improvement and Practice, 1997, 3, 105-131.	1.1	8
40	Model checking UML specifications of real time software. , 0, , .		8
41	An Empirical Assessment of Function Point-Like Object-Oriented Metrics. , 0, , .		8
42	Automated Function Points: Critical Evaluation and Discussion. , 2015, , .		8
43	An empirical study on the effect of programming languages on productivity. , 2016, , .		8
44	An Empirical Evaluation of Distribution-based Thresholds for Internal Software Measures. , 2016, , .		7
45	Risk-averse slope-based thresholds: Definition and empirical evaluation. Information and Software Technology, 2017, 89, 37-63.	4.4	7
46	Towards The Evaluation of OSS Trustworthiness: Lessons Learned From The Observation of Relevant OSS Projects. International Federation for Information Processing, 2008, , 389-395.	0.4	7
47	A Dual Language Approach to the Development of Time-Critical Systems. Electronic Notes in Theoretical Computer Science, 2005, 116, 227-239.	0.9	6
48	Applying the COSMIC Functional Size Measurement Method to Problem Frames. , 2009, , .		6
49	A study of non-linearity in the statistical convertibility of function points into COSMIC function points. , 2010, , .		6
50	On the Evaluation of Effort Estimation Models. , 2017, , .		6
51	IFPUG Function Points to COSMIC Function Points convertibility: A fine-grained statistical approach. Information and Software Technology, 2018, 97, 179-191.	4.4	6
52	OP2A: How to Improve the Quality of the Web Portal of Open Source Software Products. Lecture Notes in Business Information Processing, 2012, , 149-162.	1.0	6
53	Enhancing problem frames with scenarios and histories in UMLâ€based software development. Expert Systems, 2008, 25, 28-53.	4.5	5
54	Towards a Meta-model for Problem Frames: Conceptual Issues and Tool Building Support. , 2009, , .		5

#	Article	IF	CITATIONS
55	Analytical Convertibility of Functional Size Measures: A Tool-based Approach. , 2012, , .		5
56	Simple function points for effort estimation. , 2016, , .		5
57	Slope-based fault-proneness thresholds for software engineering measures. , 2016, , .		5
58	Technical debt as an external software attribute. , 2018, , .		5
59	A Proposal for Simplified Model-Based Cost Estimation Models. Lecture Notes in Computer Science, 2012, , 59-73.	1.3	5
60	An Evaluation of Function Point Counting Based on Measurement-Oriented Models. , 0, , .		5
61	Surveying the Adoption of FLOSS by Public Administration Local Organizations. IFIP Advances in Information and Communication Technology, 2015, , 114-123.	0.7	5
62	A Methodological Framework for SysML: a Problem Frames-based Approach. Proceedings of the Asia Pacific Software Engineering Conference, 2007, , .	0.0	4
63	Towards the integration of sysml and problem frames. , 2008, , .		4
64	Using problem frames to model the requirements ofa system for monitoring dangerous goods transportation. , 2008, , .		4
65	Business goals, user needs, and requirements: A problem frameâ€based view. Expert Systems, 2013, 30, 215-232.	4.5	4
66	Why Do Developers Adopt Open Source Software? Past, Present and Future. IFIP Advances in Information and Communication Technology, 2019, , 104-115.	0.7	4
67	Empirical evaluation and proposals for bands-based COSMIC early estimation methods. Information and Software Technology, 2019, 109, 108-125.	4.4	4
68	A Survey on the Importance of Some Economic Factors in the Adoption of Open Source Software. Studies in Computational Intelligence, 2010, , 151-162.	0.9	4
69	Software prototyping by relational techniques: experiences with program construction systems. IEEE Transactions on Software Engineering, 1988, 14, 1597-1609.	5.6	3
70	A Methodological Framework for SysML: a Problem Frames-based Approach. , 2007, , .		3
71	Towards UML-based formal specifications of component-based real-time software. International Journal on Software Tools for Technology Transfer, 2007, 9, 179-192.	1.9	3

Functional size measurement based on problem frames. , 2008, , .

#	Article	IF	CITATIONS
73	Historical Data Repositories in Software Engineering: Status and Possible Improvements. , 2012, , .		3
74	An evaluation of the statistical convertibility of Function Points into COSMIC Function Points. Empirical Software Engineering, 2014, 19, 1075-1110.	3.9	3
75	GQM-Based Definition and Evaluation of Software Project Success Indicators. Communications in Computer and Information Science, 2016, , 228-249.	0.5	3
76	Comparing the Effectiveness of Using Design and Code Measures in Software Faultiness Estimation. , 2019, , .		3
77	Comparing Static Analysis and Code Smells as Defect Predictors: An Empirical Study. IFIP Advances in Information and Communication Technology, 2021, , 1-15.	0.7	3
78	Software Process Measurement in the Real World: Dealing with Operating Constraints. Lecture Notes in Computer Science, 2006, , 80-87.	1.3	3
79	Requirements Analysis and Modeling with Problem Frames and SysML: A Case Study. Lecture Notes in Computer Science, 2010, , 74-89.	1.3	3
80	Considerations on the region of interest in the ROC space. Statistical Methods in Medical Research, 2022, 31, 419-437.	1.5	3
81	A Dual Language Approach Extension to UML for the Development of Time-Critical Component-Based Systems. Electronic Notes in Theoretical Computer Science, 2003, 82, 121-132.	0.9	2
82	Enhancing problem frames with scenarios and histories. , 2006, , .		2
83	A Meta-model Supporting the Decomposition of Problem Descriptions. , 2010, , .		2
84	Identifying Thresholds for Software Faultiness via Optimistic and Pessimistic Estimations. , 2016, , .		2
85	An Empirical Evaluation of Two COSMIC Early Estimation Methods. , 2016, , .		2
86	Evolution of functional size measures through ICONIX process phases. Journal of Software: Evolution and Process, 2020, 32, e2240.	1.6	2
87	Early and quick function points analysis: Evaluations and proposals. Journal of Systems and Software, 2021, 174, 110888.	4.5	2
88	An Empirical Study on the Persistence of SpotBugs Issues in Open-Source Software Evolution. Communications in Computer and Information Science, 2020, , 144-151.	0.5	2
89	Enriching Specifications to Represent Quality in Web Services in a Comprehensive Way. , 2015, , .		1
90	Dealing with Uncertainty in Binary Logistic Regression Fault-proneness Models. , 2019, , .		1

#	Article	IF	CITATIONS
91	Generating Early Design Models from Requirements Analysis Artifacts Using Problem Frames and SysML. Lecture Notes in Computer Science, 2011, , 97-114.	1.3	1
92	Using Extremely Simplified Functional Size Measures for Effort Estimation. , 2020, , .		1
93	Towards Component-Aware Function Point Measurement. , 2016, , .		0
94	Understanding and Modeling Al-Intensive System Development. , 2021, , .		0
95	Towards UML-Based Formal Specifications of Component-Based Real-Time Software. Lecture Notes in Computer Science, 2003, , 118-134.	1.3	0
96	An Empirical Study of Thresholds for Code Measures. , 2020, , .		0