Yukihiro Kikegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4897399/publications.pdf Version: 2024-02-01

		430874	395702
36	2,428	18	33
papers	citations	h-index	g-index
37	37	37	2050
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models. Boundary-Layer Meteorology, 2001, 101, 329-358.	2.3	1,000
2	Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings' energy-demands. Applied Energy, 2003, 76, 449-466.	10.1	196
3	Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning. Applied Energy, 2006, 83, 649-668.	10.1	187
4	Development of a Multi-Layer Urban Canopy Model for the Analysis of Energy Consumption in a Big City: Structure of the Urban Canopy Model and its Basic Performance. Boundary-Layer Meteorology, 2005, 116, 395-421.	2.3	161
5	Influence of Air-Conditioning Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using an Urban Canopy Model Coupled with a Building Energy Model. Journal of Applied Meteorology and Climatology, 2007, 46, 66-81.	1.5	160
6	Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures. Applied Energy, 2008, 85, 12-25.	10.1	102
7	Assessment of urban heat island effect for different land use–land cover from micrometeorological measurements and remote sensing data for megacity Delhi. Theoretical and Applied Climatology, 2013, 112, 647-658.	2.8	95
8	CO2 payback–time assessment of a regional-scale heating and cooling system using a ground source heat–pump in a high energy–consumption area in Tokyo. Applied Energy, 2002, 71, 147-160.	10.1	70
9	Observed and simulated sensitivities of summertime urban surface air temperatures to anthropogenic heat in downtown areas of two Japanese Major Cities, Tokyo and Osaka. Theoretical and Applied Climatology, 2014, 117, 175-193.	2.8	43
10	Temperature Variation in the Urban Canopy with Anthropogenic Energy Use. Pure and Applied Geophysics, 2003, 160, 317-324.	1.9	41
11	Urban Heat Island Assessment for a Tropical Urban Airshed in India. Atmospheric and Climate Sciences, 2012, 02, 127-138.	0.3	41
12	A climatological validation of urban air temperature and electricity demand simulated by a regional climate model coupled with an urban canopy model and a building energy model in an Asian megacity. International Journal of Climatology, 2017, 37, 1035-1052.	3.5	36
13	Urban warming and future air-conditioning use in an Asian megacity: importance of positive feedback. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	35
14	Numerical Simulations of Outdoor Heat Stress Index and Heat Disorder Risk in the 23 Wards of Tokyo. Journal of Applied Meteorology and Climatology, 2014, 53, 583-597.	1.5	31
15	Human behaviour change and its impact on urban climate: Restrictions with the G20 Osaka Summit and COVID-19 outbreak. Urban Climate, 2021, 35, 100728.	5.7	29
16	Numerical simulations of influence of heat island countermeasures on outdoor human heat stress in the 23 wards of Tokyo, Japan. Energy and Buildings, 2016, 114, 104-111.	6.7	28
17	Asian megacity heat stress under future climate scenarios: impact of air-conditioning feedback. Environmental Research Communications, 2020, 2, 015004.	2.3	26
18	Effects of Synoptic-Scale Wind under the Typical Summer Pressure Pattern on the Mesoscale High-Temperature Events in the Osaka and Kyoto Urban Areas by the WRF Model. Journal of Applied Meteorology and Climatology, 2013, 52, 1764-1778.	1.5	19

#	Article	IF	CITATIONS
19	Anthropogenic CO ₂ Emissions Changes in an Urban Area of Tokyo, Japan, Due to the COVIDâ€19 Pandemic: A Case Study During the State of Emergency in April–May 2020. Geophysical Research Letters, 2021, 48, e2021GL092600.	4.0	19
20	Numerical Study on the Effect of Buildings on Temperature Variation in Urban and Suburban Areas in Tokyo. Journal of the Meteorological Society of Japan, 2006, 84, 921-937.	1.8	17
21	Calculation of wind in a Tokyo urban area with a mesoscale model including a multi-layer urban canopy model. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96, 1655-1666.	3.9	17
22	Sensitivity of electricity consumption to air temperature, air humidity and solar radiation at the city-block scale in Osaka, Japan. Sustainable Cities and Society, 2019, 45, 38-47.	10.4	13
23	Impact of seasonal variations in weekday electricity use on urban air temperature observed in Osaka, Japan. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 971-982.	2.7	9
24	Urban electricity–temperature relationships in the Tokyo Metropolitan Area. Energy and Buildings, 2022, 256, 111729.	6.7	9
25	Urban climate changes during the COVID-19 pandemic: integration of urban-building-energy model with social big data. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	9
26	A quantification of classic but unquantified positive feedback effects in the urban-building-energy-climate system. Applied Energy, 2022, 307, 118227.	10.1	7
27	A model for detailed evaluation of fossil-energy saving by utilizing unused but possible energy-sources on a city scale. Applied Energy, 2007, 84, 921-935.	10.1	6
28	ANALYSIS AND DISCUSSION OF SENSITIVITIES OF ELECTRICITY CONSUMPTION TO OUTDOOR AIR TEMPERATURE AND OUTDOOR AIR HUMIDITY IN BUSINESS AND RESIDENTIAL DISTRICTS IN CITY-BLOCK-SCALE. Journal of Environmental Engineering (Japan), 2016, 81, 827-834.	0.4	6
29	FUTURE PROJECTION OF ELECTRICITY DEMAND AND THERMAL COMFORT FOR AUGUST IN NAGOYA CITY BY WRF-CM-BEM. Journal of Environmental Engineering (Japan), 2015, 80, 973-983.	0.4	5
30	IMPACTS OF THE COMPONENT PATTERNS OF AIR CONDITIONING SYSTEM AND POWER SUPPLY SYSTEM IN BUILDINGS UPON URBAN THERMAL ENVIRONMENT IN SUMMER. Environmental Systems Research, 2005, 33, 189-197.	0.1	4
31	VALIDATION OF A NUMERICAL URBAN WEATHER FORECASTING MODEL COUPLED WITH A BUILDING ENERGY MODEL IN TERMS OF THE REPRODUCIBILITY OF SOLAR IRRADIANCE AND ELECTRICITY DEMAND. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2017, 73, 57-69.	0.1	3
32	Observational evaluation of outdoor cooling potential of air-source heat pump water heaters. Theoretical and Applied Climatology, 2021, 145, 1007-1025.	2.8	3
33	Reduction Effect of DALY of Sleep Disturbance and Fatigue by Air Conditioner -Evaluation in Jakarta, Indonesia Journal of Life Cycle Assessment Japan, 2019, 15, 2-9.	0.0	1
34	NUMERICAL SIMULATION OF AIR-TEMPERATURE AT OFFICE BUILDING DISTRICT WITH INTERACTION MODEL BETWEEN URBAN HEAT-ISLAND AND BUILDING ENERGY-CONSUMPTION. Proceedings of Hydraulic Engineering, 2004, 48, 133-138.	0.0	0
35	STUDY ON STRUCTURE OF SURFACE AIR TEMPERATURE DISTRIBUTION AND POTENTIAL OF HEAT ISLAND COUNTERMEASURES IN DELHI UNDER DRY CLIMATE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2011, 67, II_315-II_326.	0.1	0
36	MB2 Urban Environment 1. Wind Engineers JAWE, 2006, 2006, 215-238.	0.1	0