Morsyleide de Freitas Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4897067/publications.pdf

Version: 2024-02-01

101 papers 5,646 citations

34 h-index 79698 73 g-index

102 all docs 102 docs citations

102 times ranked 6763 citing authors

#	Article	IF	CITATIONS
1	Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 2010, 81, 83-92.	10.2	850
2	Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers, 2013, 91, 229-235.	10.2	439
3	Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 2017, 97, 664-671.	5 . 2	406
4	Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresource Technology, 2009, 100, 5196-5202.	9.6	261
5	Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry, 2018, 20, 2428-2448.	9.0	228
6	Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydrate Polymers, 2017, 155, 425-431.	10.2	218
7	Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, 2016, 198, 113-118.	8.2	193
8	Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technology and Biotechnology, 2018, 56, 139-151.	2.1	175
9	Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 2016, 88, 373-379.	7.5	174
10	Vegetal fibers in polymeric composites: a review. Polimeros, 2015, 25, 9-22.	0.7	163
11	Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydrate Polymers, 2014, 112, 165-172.	10.2	136
12	Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. Journal of Environmental Management, 2010, 91, 1634-1640.	7.8	109
13	Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydrate Polymers, 2019, 211, 209-216.	10.2	94
14	Life cycle assessment of cellulose nanowhiskers. Journal of Cleaner Production, 2012, 35, 130-139.	9.3	91
15	Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT - Food Science and Technology, 2012, 46, 294-297.	5.2	89
16	Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties. Carbohydrate Polymers, 2017, 164, 317-324.	10.2	87
17	Nanoreinforced alginate–acerola puree coatings on acerola fruits. Journal of Food Engineering, 2012, 113, 505-510.	5.2	86
18	Fish gelatin films as affected by cellulose whiskers and sonication. Food Hydrocolloids, 2014, 41, 113-118.	10.7	84

#	Article	IF	CITATIONS
19	A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohydrate Polymers, 2014, 110, 456-463.	10.2	80
20	A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Industrial Crops and Products, 2016, 93, 66-75.	5.2	77
21	A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part II: Environmental assessment of technological pathways. Industrial Crops and Products, 2016, 93, 58-65.	5.2	61
22	Effect of tannic acid as crosslinking agent on fish skin gelatin-silver nanocomposite film. Food Packaging and Shelf Life, 2019, 19, 7-15.	7. 5	59
23	Optimization of the acetosolv extraction of lignin from sugarcane bagasse for phenolic resin production. Industrial Crops and Products, 2017, 96, 80-90.	5.2	51
24	Organic solvent fractionation of acetosolv palm oil lignin: The role of its structure on the antioxidant activity. International Journal of Biological Macromolecules, 2019, 122, 1163-1172.	7. 5	48
25	Bionanocomposite films based on polysaccharides from banana peels. International Journal of Biological Macromolecules, 2017, 101, 1-8.	7.5	45
26	Oxidized bacterial cellulose membrane as support for enzyme immobilization: properties and morphological features. Cellulose, 2020, 27, 3055-3083.	4.9	45
27	From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. International Journal of Biological Macromolecules, 2020, 161, 1337-1345.	7. 5	43
28	Production of hydroxyapatite–bacterial cellulose nanocomposites from agroindustrial wastes. Cellulose, 2015, 22, 3177-3187.	4.9	42
29	Banana (Musa sp. cv. Pacovan) Pseudostem Fibers are Composed of Varying Lignocellulosic Composition throughout the Diameter. BioResources, 2014, 9, .	1.0	41
30	Uso da casca de coco verde como adsorbente na remoção de metais tóxicos. Quimica Nova, 2007, 30, 1153-1157.	0.3	39
31	Nanocomposite Films from Mango Kernel or Corn Starch with Starch Nanocrystals. Starch/Staerke, 2018, 70, 1800028.	2.1	39
32	In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites. Carbohydrate Polymers, 2020, 237, 116174.	10.2	39
33	Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties. Carbohydrate Polymers, 2020, 250, 116927.	10.2	38
34	A Preliminary Study for the Use of Natural Fibers as Reinforcement in Starch-Gluten-Glycerol Matrix. Macromolecular Symposia, 2006, 245-246, 558-564.	0.7	36
35	Seleção dos indicadores da qualidade das águas superficiais pelo emprego da análise multivariada. Engenharia Agricola, 2007, 27, 683-690.	0.7	36
36	Steam explosion pretreatment improves acetic acid organosolv delignification of oil palm mesocarp fibers and sugarcane bagasse. International Journal of Biological Macromolecules, 2021, 175, 304-312.	7.5	35

#	Article	IF	CITATIONS
37	Bacterial Cellulose Production by Komagataeibacter hansenii ATCC 23769 Using Sisal Juice - An Agroindustry Waste. Brazilian Journal of Chemical Engineering, 2017, 34, 671-680.	1.3	34
38	Composição quÃmica, propriedades mecânicas e tÃ@rmicas da fibra de frutos de cultivares de coco verde. Revista Brasileira De Fruticultura, 2009, 31, 837-846.	0.5	33
39	Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber. Industrial Crops and Products, 2020, 143, 111907.	5.2	32
40	Avaliação da vulnerabilidade ambiental de reservatórios à eutrofização. Engenharia Sanitaria E Ambiental, 2007, 12, 399-409.	0.5	30
41	Papain immobilized on alginate membrane for wound dressing application. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111222.	5.0	30
42	Conductive Nanocomposites Based on Cellulose Nanofibrils Coated with Polyanilineâ€ĐBSA Via ⟨i⟩In Situ⟨/i⟩ Polymerization. Macromolecular Symposia, 2012, 319, 196-202.	0.7	29
43	Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers. Journal of Applied Polymer Science, 2009, 111, 612-618.	2.6	27
44	The use of biomass for packaging films and coatings. , 2014, , 819-874.		27
45	Fibrous residues of palm oil as a source of green chemical building blocks. Industrial Crops and Products, 2016, 94, 480-489.	5.2	27
46	Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. Materials Science and Engineering C, 2020, 116, 111175.	7.3	27
47	Cellulose nanocrystals-reinforced core-shell hydrogels for sustained release of fertilizer and water retention. International Journal of Biological Macromolecules, 2022, 216, 24-31.	7.5	27
48	Polymer Biocomposites and Nanobiocomposites Obtained from Mango Seeds. Macromolecular Symposia, 2014, 344, 39-54.	0.7	26
49	TEMPO oxidation and high-speed blending as a combined approach to disassemble bacterial cellulose. Cellulose, 2019, 26, 2291-2302.	4.9	24
50	Binderless Fiberboards Made from Unripe Coconut Husks. Waste and Biomass Valorization, 2018, 9, 2245-2254.	3.4	24
51	Processing and Properties of PCL/Cotton Linter Compounds. Materials Research, 2017, 20, 317-325.	1.3	23
52	Comparative analysis of different chlorine-free extraction on oil palm mesocarp fiber. Industrial Crops and Products, 2020, 150, 112305.	5 . 2	23
53	Environmental assessment of bioproducts in development stage: The case of fiberboards made from coconut residues. Journal of Cleaner Production, 2017, 153, 230-241.	9.3	22
54	Corn starch based films treated by dielectric barrier discharge plasma. International Journal of Biological Macromolecules, 2021, 183, 2009-2016.	7.5	22

#	Article	IF	CITATIONS
55	Impactos ambientais do lançamento de efluentes da carcinicultura em águas interiores. Engenharia Sanitaria E Ambiental, 2005, 10, 167-174.	0.5	21
56	All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packaging and Shelf Life, 2021, 29, 100715.	7.5	21
57	Ecofriendly modification of acetosolv lignin from oil palm biomass for improvement of PMMA thermoâ€oxidative properties. Journal of Applied Polymer Science, 2017, 134, 45498.	2.6	20
58	Strontium delivery systems based on bacterial cellulose and hydroxyapatite for guided bone regeneration. Cellulose, 2018, 25, 6661-6679.	4.9	19
59	Coir Fibers as Valuable Raw Material for Biofuel Pellet Production. Waste and Biomass Valorization, 2019, 10, 3535-3543.	3.4	19
60	Stable microfluidized bacterial cellulose suspension. Cellulose, 2019, 26, 5851-5864.	4.9	19
61	Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice. Toxicological Research, 2019, 35, 45-63.	2.1	19
62	Papain immobilization on heterofunctional membrane bacterial cellulose as a potential strategy for the debridement of skin wounds. International Journal of Biological Macromolecules, 2020, 165, 3065-3077.	7.5	19
63	Fatores determinantes da qualidade das águas superficiais na bacia do Alto Acaraú, Ceará, Brasil. Ciencia Rural, 2007, 37, 1791-1797.	0.5	18
64	Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 2018, 25, 6011-6029.	4.9	16
65	Biofilm development and ammonia removal in the nitrification of a saline wastewater. Bioresource Technology, 1998, 65, 135-138.	9.6	14
66	Uso do pó da casca de coco na formulação de substratos para formação de mudas enxertadas de cajueiro anão precoce. Revista Brasileira De Fruticultura, 2003, 25, 557-558.	0.5	14
67	Development of Chlorine-Free Pulping Method to Extract Cellulose Nanocrystals from Pressed Oil Palm Mesocarp Fibers. Journal of Biobased Materials and Bioenergy, 2015, 9, 372-379.	0.3	14
68	APROVEITAMENTO DE RESÃDUOS AGROINDUSTRIAIS: PRODUÃ \sharp Ã f O DE ENZIMAS A PARTIR DA CASCA DE COCO VERDE. Boletim Centro De Pesquisa De Processamento De Alimentos, 2001, 19, .	0.2	13
69	Impactos ambientais da carcinicultura de \tilde{A}_i guas interiores. Engenharia Sanitaria E Ambiental, 2006, 11, 231-240.	0.5	12
70	Hemocompatibility of 2â€ <i>N</i> â€3,6â€ <i>O</i> â€sulfated chitosan films. Journal of Applied Polymer Science, 2019, 136, 47128.	2.6	12
71	Films from cashew byproducts: cashew gum and bacterial cellulose from cashew apple juice. Journal of Food Science and Technology, 2021, 58, 1979-1986.	2.8	12
72	Advances in Bacterial Cellulose/Strontium Apatite Composites for Bone Applications. Polymer Reviews, 2021, 61, 736-764.	10.9	12

#	Article	IF	Citations
73	An approach for implementing ecodesign at early research stage: A case study of bacterial cellulose production. Journal of Cleaner Production, 2020, 269, 122245.	9.3	12
74	Environmental performance evaluation of agro-industrial innovations – part 1: Ambitec-Life Cycle, a methodological approach for considering life cycle thinking. Journal of Cleaner Production, 2010, 18, 1366-1375.	9.3	11
75	Chemically modified cellulose nanocrystals as polyanion for preparation of polyelectrolyte complex. Cellulose, 2019, 26, 1725-1746.	4.9	11
76	From Magneto-Dielectric Biocomposite Films to Microstrip Antenna Devices. Journal of Composites Science, 2020, 4, 144.	3.0	10
77	Hierarchical zeolite based on multiporous zeolite A and bacterial cellulose: An efficient adsorbent of Pb2+. Microporous and Mesoporous Materials, 2021, 312, 110752.	4.4	10
78	Komagataeibacter intermedius V-05: An Acetic Acid Bacterium Isolated from Vinegar Industry, with High Capacity for Bacterial Cellulose Production in Soybean Molasses Medium. Food Technology and Biotechnology, 2021, 59, 432-442.	2.1	8
79	Environmental performance evaluation of agro-industrial innovations – Part 2: methodological approach for performing vulnerability analysis of watersheds. Journal of Cleaner Production, 2010, 18, 1376-1385.	9.3	6
80	Rheological, Morphological and Mechanical Characterization of Recycled Poly (Ethylene) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tf	50 462 Td (T
81	Cashew tree wood flour activated with cashew nut shell liquid for the production of functionalized composites. Composite Interfaces, 2018, 25, 93-107.	2.3	5
82	Lignocellulosic-Based Nanostructures and Their Use in Food Packaging. , 2018, , 47-69.		5
83	Development of an integrated process to produce CNFs and lignin and its potential applications for agrochemical delivery. Cellulose, 2021, 28, 10891-10904.	4.9	5
84	Anaerobic treatment of coconut husk liquor for biogas production. Water Science and Technology, 2009, 59, 1841-1846.	2.5	4
85	Mesquite seed gum and Nile tilapia fish gelatin composite films with cellulose nanocrystals. Pesquisa Agropecuaria Brasileira, 2018, 53, 495-503.	0.9	4
86	Biocomposite based on nanoscale calcium phosphate and collagen from Nile tilapia (Oreochromis) Tj ETQq0 0 0	rgBT/Ove 2.6	rlock 10 Tf 50
87	Mesquite (<i>Prosopis juliflora</i> (Sw.)) Extract is an Alternative Nutrient Source for Bacterial Cellulose Production. Journal of Biobased Materials and Bioenergy, 2016, 10, 63-70.	0.3	4
88	Progress in Organosolv and Steam Explosion Pretreatments of Oil Palm Fibers for Biomacromolecules Extraction. Journal of Natural Fibers, 2022, 19, 10708-10722.	3.1	4
89	Optimization by Response Surface Methodology of Ethanosolv Lignin Recovery from Coconut Fiber, Oil Palm Mesocarp Fiber, and Sugarcane Bagasse. Industrial & Engineering Chemistry Research, 2022, 61, 4058-4067.	3.7	4
90	Fabrication of Fish Gelatin Microfibrous Mats by Solution Blow Spinning. Materials Research, 2019, 22,	1.3	3

#	Article	IF	CITATIONS
91	Absorção de água, solubilidade em água, propriedades mecânicas e morfológicas de compósitos de glúten de milho e poli(hidroxibutirato-co-valerato) (PHBV) reforçados com fibras de coco verde. Polimeros, 2013, 23, 807-813.	0.7	3
92	Ãndice de sustentabilidade agroambiental para o perÃmetro irrigado Ayres de Souza. Ciencia E Agrotecnologia, 2008, 32, 1272-1279.	1.5	3
93	Painéis de partÃeulas elaborados do mesocarpo do dendê como alternativa ao MDF utilizado na construção civil. Engenharia Sanitaria E Ambiental, 2019, 24, 169-176.	0.5	2
94	Reúso da água da despesca na produção de camarão. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 1314-1320.	1.1	2
95	CLASSIFICAÇÃO DA SUSTENTABILIDADE DAS UNIDADES DE PRODUÇÃO AGRÃCOLA NO PERÃMETRO IRRIGA ARARAS NORTE, CEARÕ Scientia Agraria, 2009, 10, 157.	DO 0.5	1
96	Caracterização morfolÃ 3 gica de nanocristais de celulose por microscopia de força atômica. Revista Materia, 2016, 21, 532-540.	0.2	1
97	Anaerobic treatment of coconut husk liquor for biogas production. Journal of Biotechnology, 2008, 136, S656.	3.8	0
98	Physicochemical and Biological Characterization of Agrowaste from Green Coconut Shell and its Potential Use in Laboratory Animal Breeding. Journal of Solid Waste Technology and Management, 2012, 38, 194-201.	0.2	0
99	SUCO DE CAJU COMO FONTE DE CARBONO PARA A PRODUÇÃO DE CELULOSE BACTERIANA: UMA INVESTIGAÇÃO PRELIMINAR SOBRE O TEMA. , 0, , .		0
100	Use of Bacterial Nanocellulose for Pickering Stabilization of Methyl Methacrylate Suspension Polymerizations. Macromolecular Symposia, 2020, 394, 2000160.	0.7	0
101	Physical Characterization of Material for the Development of Orthopedic Orthosis for Diabetic Foot. Processes, 2022, 10, 884.	2.8	0