Leena Järvi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4896783/publications.pdf Version: 2024-02-01

LEENA LÃONI

#	Article	IF	CITATIONS
1	Enhanced air pollution via aerosol-boundary layer feedback in China. Scientific Reports, 2016, 6, 18998.	1.6	285
2	Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry and Physics, 2008, 8, 6281-6295.	1.9	258
3	Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environmental Modelling and Software, 2018, 99, 70-87.	1.9	171
4	The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. Journal of Hydrology, 2011, 411, 219-237.	2.3	150
5	Surface–atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 188.	0.8	125
6	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 2020, 135, 105345.	4.8	106
7	Four-year (2006–2009) eddy covariance measurements of CO ₂ flux over an urban area in Beijing. Atmospheric Chemistry and Physics, 2012, 12, 7881-7892.	1.9	85
8	Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites. Urban Climate, 2016, 18, 1-32.	2.4	83
9	Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010. Atmospheric Chemistry and Physics, 2012, 12, 8475-8489.	1.9	82
10	Intra-City Variation in Urban Morphology and Turbulence Structure in Helsinki, Finland. Boundary-Layer Meteorology, 2013, 146, 469-496.	1.2	76
11	Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. Faraday Discussions, 2021, 226, 334-347.	1.6	74
12	Fraction of natural area as main predictor of net CO ₂ emissions from cities. Geophysical Research Letters, 2012, 39, .	1.5	73
13	Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective. Atmosphere, 2018, 9, 65.	1.0	73
14	Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems. Atmospheric Measurement Techniques, 2016, 9, 4915-4933.	1.2	69
15	Revised eddy covariance flux calculation methodologies – effect on urban energy balance. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 18184.	0.8	63
16	Development of the Surface Urban Energy and Water Balance Scheme (SUEWS) for cold climate cities. Geoscientific Model Development, 2014, 7, 1691-1711.	1.3	60
17	Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): Longwave Radiation Parameterization and Seasonality-Related Developments. Journal of Applied Meteorology and Climatology, 2011, 50, 185-202.	0.6	58
18	Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1581-1596.	1.0	58

Leena JÃ**r**vi

#	Article	IF	CITATIONS
19	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	1.9	57
20	Annual particle flux observations over a heterogeneous urban area. Atmospheric Chemistry and Physics, 2009, 9, 7847-7856.	1.9	56
21	Seasonal surface urban energy balance and wintertime stability simulated using three landâ€surface models in the highâ€latitude city <scp>H</scp> elsinki. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 401-417.	1.0	54
22	The Helsinki Testbed: A Mesoscale Measurement, Research, and Service Platform. Bulletin of the American Meteorological Society, 2011, 92, 325-342.	1.7	48
23	Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmospheric Chemistry and Physics, 2008, 8, 1017-1027.	1.9	41
24	Direct observations of CO2 emission reductions due to COVID-19 lockdown across European urban districts. Science of the Total Environment, 2022, 830, 154662.	3.9	37
25	Anthropogenic and biogenic influence on VOC fluxes at an urban background site in Helsinki, Finland. Atmospheric Chemistry and Physics, 2016, 16, 7981-8007.	1.9	34
26	The effect of local sources on aerosol particle number size distribution, concentrations and fluxes in Helsinki, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19786.	0.8	32
27	Study of Realistic Urban Boundary Layer Turbulence with High-Resolution Large-Eddy Simulation. Atmosphere, 2020, 11, 201.	1.0	32
28	An Overview of the Urban Boundary Layer Atmosphere Network in Helsinki. Bulletin of the American Meteorological Society, 2013, 94, 1675-1690.	1.7	31
29	Implementation of the sectional aerosol module SALSA2.0 into the PALM model system 6.0: model development and first evaluation. Geoscientific Model Development, 2019, 12, 1403-1422.	1.3	31
30	Spatial Modeling of Local‣cale Biogenic and Anthropogenic Carbon Dioxide Emissions in Helsinki. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8363-8384.	1.2	27
31	Uncertainty of eddy covariance flux measurements over an urban area based on two towers. Atmospheric Measurement Techniques, 2018, 11, 5421-5438.	1.2	25
32	On the Temperature Structure Parameter and Sensible Heat Flux over Helsinki from Sonic Anemometry and Scintillometry. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1604-1615.	0.5	24
33	Footprint Evaluation for Flux and Concentration Measurements for an Urban-Like Canopy with Coupled Lagrangian Stochastic and Large-Eddy Simulation Models. Boundary-Layer Meteorology, 2015, 157, 191-217.	1.2	24
34	Changes to the Water Balance Over a Century of Urban Development in Two Neighborhoods: Vancouver, Canada. Water Resources Research, 2018, 54, 6625-6642.	1.7	23
35	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	23
36	Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling. Geoscientific Model Development, 2017, 10, 4187-4205.	1.3	21

Leena JÃ**r**vi

#	Article	IF	CITATIONS
37	Sensitivity of Surface Urban Energy and Water Balance Scheme (SUEWS) to downscaling of reanalysis forcing data. Urban Climate, 2018, 23, 36-52.	2.4	21
38	Environmental and crown related factors affecting street tree transpiration in Helsinki, Finland. Urban Ecosystems, 2016, 19, 1693-1715.	1.1	20
39	Warming effects on the urban hydrology in cold climate regions. Scientific Reports, 2017, 7, 5833.	1.6	20
40	Sensitivity of spatial aerosol particle distributions to the boundary conditions in the PALM model system 6.0. Geoscientific Model Development, 2020, 13, 5663-5685.	1.3	20
41	Micrometeorological Observations of a Microburst in Southern Finland. Boundary-Layer Meteorology, 2007, 125, 343-359.	1.2	19
42	Urban surface cover determined with airborne lidar at 2m resolution – Implications for surface energy balance modelling. Urban Climate, 2015, 13, 52-72.	2.4	18
43	Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations – A case study from a city-boulevard. Atmospheric Environment: X, 2020, 6, 100073.	0.8	16
44	Effect of seasonal variability and land use on particle number and CO2 exchange in Helsinki, Finland. Urban Climate, 2015, 13, 94-109.	2.4	15
45	Modelling the biogenic CO 2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters. Agricultural and Forest Meteorology, 2017, 236, 113-122.	1.9	14
46	Effects of forests on particle number concentrations in near-road environments across three geographic regions. Environmental Pollution, 2020, 266, 115294.	3.7	14
47	Simulation of the radiative effect of haze on the urban hydrological cycle using reanalysis data in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 7001-7017.	1.9	11
48	Carbon sequestration potential of street tree plantings in Helsinki. Biogeosciences, 2022, 19, 2121-2143.	1.3	9
49	Impact of coordinate rotation on eddy covariance fluxes at complex sites. Agricultural and Forest Meteorology, 2020, 287, 107940.	1.9	8
50	Urban Water Storage Capacity Inferred From Observed Evapotranspiration Recession. Geophysical Research Letters, 2022, 49, .	1.5	5
51	Effects of precipitation seasonal distribution on net ecosystem CO2 exchange over an alpine meadow in the southeastern Tibetan Plateau. International Journal of Biometeorology, 2022, 66, 1561-1573.	1.3	5
52	Aerosol number fluxes and concentrations over a southern European urban area. Atmospheric Environment, 2022, 269, 118849.	1.9	4
53	Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets. Geoscientific Model Development, 2021, 14, 7411-7424.	1.3	4
54	Species-Specific Information for Enhancing Ecosystem Services. Future City, 2017, , 111-144.	0.2	3

Leena JÃ**r**vi

#	Article	IF	CITATIONS
55	A novel approach of creating sustainable urban planning solutions that optimise the local air quality and environmental equity in Helsinki, Finland: The CouSCOUS study protocol. PLoS ONE, 2021, 16, e0260009.	1.1	3
56	Evaluating modelled winds over an urban area using groundâ€based Doppler lidar observations. Meteorological Applications, 2022, 29, .	0.9	3
57	Corrigendum to "Four-year (2006–2009) eddy covariance measurements of CO ₂ flux over an urban area in Beijing" published in Atmos. Chem. Phys., 12, 7881–7892, 2012. Atmospheric Chemistry and Physics, 2013, 13, 647-647.	1.9	1
58	On the application of spectral corrections to particle flux measurements. Environmental Science: Nano, 2018, 5, 2315-2324.	2.2	1
59	Corrigendum to "Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010" published in Atmos. Chem. Phys., 12, 8475–8489, 2012. Atmospheric Chemistry and Physics, 2012, 12, 11765-11765.	1.9	0
60	Observations of biomass burning smoke from Russian wild fire episodes in Finland 2010. , 2013, , .		0
61	Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland. Atmospheric Measurement Techniques, 2022, 15, 2417-2432.	1.2	0