Yan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4896662/publications.pdf

Version: 2024-02-01

47 papers 4,622 citations

33 h-index 214800 47 g-index

48 all docs

48 docs citations

48 times ranked 5255 citing authors

#	Article	IF	CITATIONS
1	Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nature Communications, 2022, 13, 1317.	12.8	141
2	Skin bioelectronics towards long-term, continuous health monitoring. Chemical Society Reviews, 2022, 51, 3759-3793.	38.1	85
3	On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Science Advances, 2022, 8, .	10.3	58
4	Antimicrobial second skin using copper nanomesh. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	10
5	Molecular doping of near-infrared organic photodetectors for photoplethysmogram sensors. Journal of Materials Chemistry C, 2021, 9, 3129-3135.	5.5	6
6	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	14.9	100
7	Electrospun nanofiber-based soft electronics. NPG Asia Materials, 2021, 13, .	7.9	127
8	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality (Adv. Funct.) Tj ETQq0 0 () rgBT/Ov	erlock 10 Tf 5
9	Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	57
10	Intrinsically Stretchable Fuel Cell Based on Enokitakeâ€Like Standing Gold Nanowires. Advanced Energy Materials, 2020, 10, 1903512.	19.5	34
11	Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science, 2020, 370, 966-970.	12.6	361
12	Highly Sensitive Flexible Iontronic Pressure Sensor for Fingertip Pulse Monitoring. Advanced Healthcare Materials, 2020, 9, e2001023.	7.6	106
13	A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Science Advances, 2020, 6, eabb7043.	10.3	155
14	Nanomesh Organic Electrochemical Transistor for Comfortable On-Skin Electrodes with Local Amplifying Function. ACS Applied Electronic Materials, 2020, 2, 3601-3609.	4.3	26
15	Highly Selective Nanostructured Electrochemical Sensor Utilizing Densely Packed Ultrathin Gold Nanowires Film. Electroanalysis, 2020, 32, 1850-1858.	2.9	11
16	A Soft Resistive Acoustic Sensor Based on Suspended Standing Nanowire Membranes with Point Crack Design. Advanced Functional Materials, 2020, 30, 1910717.	14.9	68
17	Tuning the Rigidity of Silk Fibroin for the Transfer of Highly Stretchable Electronics. Advanced Functional Materials, 2020, 30, 2001518.	14.9	34
18	Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29014-29021.	8.0	148

#	Article	IF	CITATIONS
19	Catâ€Tailâ€Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. ChemPlusChem, 2019, 84, 1030-1030.	2.8	1
20	Giant Poisson's Effect for Wrinkleâ€Free Stretchable Transparent Electrodes. Advanced Materials, 2019, 31, e1902955.	21.0	38
21	Ultrasensitive paper-based polyaniline/graphene composite strain sensor for sign language expression. Composites Science and Technology, 2019, 181, 107660.	7.8	26
22	Catâ€Tailâ€Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. ChemPlusChem, 2019, 84, 1031-1038.	2.8	6
23	Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor. Inorganic Chemistry Communication, 2019, 104, 98-104.	3.9	19
24	Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition. Small, 2019, 15, e1804853.	10.0	19
25	<i>Enokitake</i> Mushroom-like Standing Gold Nanowires toward Wearable Noninvasive Bimodal Glucose and Strain Sensing. ACS Applied Materials & Interfaces, 2019, 11, 9724-9729.	8.0	91
26	PEDOT:PSS/Grafted-PDMS Electrodes for Fully Organic and Intrinsically Stretchable Skin-like Electronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10373-10379.	8.0	69
27	Stretchable, transparent and imperceptible supercapacitors based on Au@MnO ₂ nanomesh electrodes. Chemical Communications, 2019, 55, 13737-13740.	4.1	21
28	Patterning Vertically Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors. Advanced Electronic Materials, 2019, 5, 1800509.	5.1	48
29	A Mossâ€Inspired Electroless Goldâ€Coating Strategy Toward Stretchable Fiber Conductors by Dry Spinning. Advanced Electronic Materials, 2019, 5, 1800462.	5.1	62
30	A Wearable Second Skin‣ike Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline. Advanced Materials Technologies, 2019, 4, 1800473.	5.8	88
31	Highly Stretchable Fiber-Shaped Supercapacitors Based on Ultrathin Gold Nanowires with Double-Helix Winding Design. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42612-42620.	8.0	47
32	Vertical Gold Nanowires Stretchable Electrochemical Electrodes. Analytical Chemistry, 2018, 90, 13498-13505.	6.5	58
33	Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics. ACS Nano, 2018, 12, 9742-9749.	14.6	130
34	A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches. Nanoscale Horizons, 2018, 3, 640-647.	8.0	49
35	Unconventional Janus Properties of Enokitake-like Gold Nanowire Films. ACS Nano, 2018, 12, 8717-8722.	14.6	65
36	Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. Journal of Materials Chemistry C, 2018, 6, 8160-8170.	5.5	131

#	Article	IF	CITATIONS
37	Self-assembled gold nanorime mesh conductors for invisible stretchable supercapacitors. Nanoscale, 2018, 10, 15948-15955.	5. 6	40
38	Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward "Invisible―Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Advanced Functional Materials, 2017, 27, 1700845.	14.9	257
39	Recent progresses on flexible tactile sensors. Materials Today Physics, 2017, 1, 61-73.	6.0	227
40	Selfâ€assembled Ultrathin Gold Nanowires as Highly Transparent, Conductive and Stretchable Supercapacitor. Electroanalysis, 2016, 28, 1298-1304.	2.9	73
41	Fabrication of Highly Transparent and Flexible NanoMesh Electrode via Selfâ€assembly of Ultrathin Gold Nanowires. Advanced Electronic Materials, 2016, 2, 1600121.	5.1	112
42	Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors. Materials Horizons, 2016, 3, 208-213.	12.2	121
43	Liquid-Wetting-Solid Strategy To Fabricate Stretchable Sensors for Human-Motion Detection. ACS Sensors, 2016, 1, 303-311.	7.8	64
44	Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19700-19708.	8.0	273
45	Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring. Advanced Functional Materials, 2014, 24, 4666-4670.	14.9	923
46	Synthesis, Characterization and Biological Evaluation of Two Silver(I) <i>trans</i> ê€cinnamate Complexes as Urease Inhibitors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 423-428.	1.2	10
47	Syntheses and structures of <i>N'</i> -(5-bromo-2-hydroxybenzylidene)-4-methoxybenzohydrazide and its dioxomolybdenum(VI) complex with catalytic epoxidation property. Journal of Coordination Chemistry, 2013, 66, 2325-2334.	2.2	8