Ailin Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4896395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile route to prepare porous M-type SrFe12O19 ferrites assisted by using carbon spheres: Structural and magnetic properties. Journal of Physics and Chemistry of Solids, 2022, 163, 110565.	4.0	2
2	Phosphorus/Phosphideâ€Based Materials for Alkali Metalâ€Ion Batteries. Advanced Science, 2022, 9, e2200740.	11.2	14
3	Cr3+ substituted spinel ZnFe2O4 ferrites obtained via a hydrothermal process: structural and magnetic properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 12725-12731.	2.2	0
4	A comparative study of spinel ZnFe2O4 ferrites obtained via a hydrothermal and a ceramic route: Structural and magnetic properties. Ceramics International, 2021, 47, 15173-15179.	4.8	24
5	M-type SrFe12O19 ferrites obtained by using cubic or spindle-like α-Fe2O3 as Fe sources: A comparative study. Journal of Alloys and Compounds, 2019, 784, 276-281.	5.5	16
6	Hexagonal SrFe12O19 ferrite with high saturation magnetization. Ceramics International, 2018, 44, 13551-13555.	4.8	33
7	Ce-Substituted M-Type SrFe12O19 Ferrites: Phase Formation and Magnetic Properties. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1247-1251.	1.8	17
8	Synthesis and properties of Fe–B powders by molten salt method. Journal of Materials Research, 2017, 32, 883-889.	2.6	21
9	Synthesis and magnetic properties of manganese–zinc ferrite nanoparticles obtained via a hydrothermal method. Journal of Materials Science: Materials in Electronics, 2017, 28, 12268-12272.	2.2	19
10	The availability of Henkel plots for sintered hard/soft magnetic composite ferrites. Physica B: Condensed Matter, 2016, 493, 14-16.	2.7	10
11	Ni@C nanocapsules-decorated SrFe12O19 hexagonal nanoflakes for high-frequency microwave absorption. Journal of Alloys and Compounds, 2016, 678, 234-240.	5.5	34
12	Synthesis, structure and magnetic properties of hexagonal BaFe12O19 ferrite obtained via a hydrothermal method. Journal of Materials Science: Materials in Electronics, 2016, 27, 10864-10868.	2.2	22
13	A facile way to realize exchange coupling interaction in hard/soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2016, 417, 355-358.	2.3	23
14	Goethite (α-FeOOH) nanopowders synthesized via a surfactant-assisted hydrothermal method: morphology, magnetic properties and conversion to rice-like α-Fe2O3 after annealing. RSC Advances, 2015, 5, 27091-27096.	3.6	18
15	A solution for the preparation of hexagonal M-type SrFe12O19 ferrite using egg-white: Structural and magnetic properties. Journal of Magnetism and Magnetic Materials, 2015, 393, 325-330.	2.3	17
16	Sintered SrFe12O19/Fe–B composites: Precipitation of α-Fe and magnetic properties. Journal of Alloys and Compounds, 2015, 649, 760-765.	5.5	8
17	Magnetic properties of sintered SrFe12O19–CoFe2O4 nanocomposites with exchange coupling. Journal of Alloys and Compounds, 2015, 653, 108-116.	5.5	52
18	Structural and magnetic properties of spinel (Co,Cu)Fe2O4 ferrites prepared via a hydrothermal and sintering process. Journal of Materials Science: Materials in Electronics, 2014, 25, 4851-4855.	2.2	4

AILIN XIA

#	Article	IF	CITATIONS
19	Facile hydrothermal synthesis of core/shell-like composite SrFe12O19/(Ni, Zn)Fe2O4 nanopowders and their magnetic properties. RSC Advances, 2014, 4, 18885.	3.6	16
20	Magnetic properties, exchange coupling and novel stripe domains in bulk SrFe ₁₂ O ₁₉ /(Ni,Zn)Fe ₂ O ₄ composites. Journal Physics D: Applied Physics, 2014, 47, 415004.	2.8	35
21	Hydrothermal hexagonal SrFe12O19 ferrite powders: Phase composition, microstructure and acid washing. Electronic Materials Letters, 2014, 10, 423-426.	2.2	15
22	Effects of copper content on the structural and magnetic properties of spinel (Co,Cu)Fe2O4 ferrites. Journal of Materials Science: Materials in Electronics, 2014, 25, 2578-2582.	2.2	9
23	Microstructure and magnetic transition in Cr-substituted Mg–Zn spinel ferrite powders prepared via hydrothermal method. Journal of Materials Science: Materials in Electronics, 2013, 24, 4166-4169.	2.2	17
24	Synthesis and magnetic properties of hydrothermal magnesium–zinc spinel ferrite powders. Journal of Materials Science: Materials in Electronics, 2013, 24, 4901-4905.	2.2	12
25	A facile route to carbon-coated vanadium carbide nanocapsules as microwave absorbers. RSC Advances, 2013, 3, 18082.	3.6	19
26	Hydrothermal Mg1â^'xZnxFe2O4 spinel ferrites: Phase formation and mechanism of saturation magnetization. Materials Letters, 2013, 105, 199-201.	2.6	45
27	Hexagonal SrFe12O19 ferrites: Hydrothermal synthesis and their sintering properties. Journal of Magnetism and Magnetic Materials, 2013, 332, 186-191.	2.3	117
28	Li–Cr substituted nickel–zinc–copper ferrite powders: structural and magnetic properties. International Journal of Materials Research, 2012, 103, 490-493.	0.3	2
29	Structural and magnetic properties of Li–Al-substituted Ni–Zn–Cu ferrite powders prepared via chemical coprecipitation method. Journal of Materials Science: Materials in Electronics, 2012, 23, 1851-1854.	2.2	2
30	Crystalline structures and intrinsic magnetic properties of ZnTi-substituted hexagonal M-type Ba ferrite powder. Journal of Materials Science: Materials in Electronics, 2011, 22, 223-227.	2.2	9
31	Comparative study of structural and magnetic properties of NiZnCu ferrite powders prepared via chemical coprecipitation method with different coprecipitators. Journal of Magnetism and Magnetic Materials, 2011, 323, 1682-1685.	2.3	18
32	Effects of impurity Na+ ions on the structural and magnetic properties of Ni–Zn–Cu ferrite powders: An improvement for chemical coprecipitation method. Journal of Magnetism and Magnetic Materials, 2011, 323, 2080-2082.	2.3	23
33	Effects of excessive Zn2+ ions on intrinsic magnetic and structural properties of Ni0.2Zn0.6Cu0.2Fe2O4 powder prepared by chemical coprecipitation method. Current Applied Physics, 2010, 10, 825-827.	2.4	12