Damian Kowalski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4896027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO ₂ batteries <i>via</i> a modified mechanical suppression effect. Journal of Materials Chemistry A, 2022, 10, 3122-3133.	10.3	17
2	A low-cost and non-corrosive electropolishing strategy for long-life zinc metal anode in rechargeable aqueous battery. Energy Storage Materials, 2022, 46, 223-232.	18.0	12
3	High-corrosion-resistance mechanism of graphitized platelet-type carbon nanofibers in the OER in a concentrated alkaline electrolyte. Journal of Materials Chemistry A, 2022, 10, 8208-8217.	10.3	8
4	Bi2WO6â€based Z-scheme photocatalysts: Principles, mechanisms and photocatalytic applications. Journal of Environmental Chemical Engineering, 2022, 10, 107838.	6.7	24
5	Site-Selective Au ⁺ Electroreduction in Titania Nanotubes for Electrochemical and Plasmonic Applications. ACS Applied Nano Materials, 2022, 5, 7696-7703.	5.0	2
6	On the mechanism of photocatalytic reactions on Cu _x O@TiO ₂ core–shell photocatalysts. Journal of Materials Chemistry A, 2021, 9, 10135-10145.	10.3	35
7	<i>In Situ</i> Activation of a Manganese Perovskite Oxygen Reduction Catalyst in Concentrated Alkaline Media. Journal of the American Chemical Society, 2021, 143, 6505-6515.	13.7	25
8	Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors. ACS Sustainable Chemistry and Engineering, 2021, 9, 9465-9473.	6.7	16
9	Slippery Liquid-Infused Porous Surfaces on Aluminum for Corrosion Protection with Improved Self-Healing Ability. ACS Applied Materials & amp; Interfaces, 2021, 13, 45089-45096.	8.0	20
10	Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity. Applied Surface Science, 2021, 537, 147854.	6.1	17
11	A lithiophilic carbon scroll as a Li metal host with low tortuosity design and "Dead Li―self-cleaning capability. Journal of Materials Chemistry A, 2021, 9, 13332-13343.	10.3	15
12	Fluorineâ€Free Slippery Liquidâ€Infused Porous Surfaces Prepared Using Hierarchically Porous Aluminum. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900836.	1.8	10
13	Formation of quasi-spherical Au48-198 clusters in anodic titania nanotubes grown on Ti-Au alloys. Electrochemistry Communications, 2020, 120, 106847.	4.7	3
14	In Situ Activation of Anodized Ni–Fe Alloys for the Oxygen Evolution Reaction in Alkaline Media. ACS Applied Energy Materials, 2020, 3, 12316-12326.	5.1	23
15	Compositional variations in anodic nanotubes/nanopores formed on Fe 100, 110 and 111 single crystals. Electrochimica Acta, 2020, 364, 137316.	5.2	4
16	Characterization of Dark-Colored Nanoporous Anodic Films on Zinc. Coatings, 2020, 10, 1014.	2.6	5
17	Highly Durable Oxygen Evolution Reaction Catalyst: Amorphous Oxyhydroxide Derived from Brownmillerite-Type Ca ₂ FeCoO ₅ . ACS Applied Energy Materials, 2020, 3, 5269-5276.	5.1	10
18	Long-term durability of platelet-type carbon nanofibers for OER and ORR in highly alkaline media. Applied Catalysis A: General, 2020, 597, 117555.	4.3	23

DAMIAN KOWALSKI

#	Article	IF	CITATIONS
19	(Invited) Highly Durable Platelet-Type Carbon Nanofibers for Oer in Alkaline Electrolyte. ECS Meeting Abstracts, 2020, MA2020-01, 2805-2805.	0.0	0
20	Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers as a Bifunctional Catalyst for Oxygen Evolution Reaction and Oxygen Reduction Reaction. Electrochemistry, 2020, 88, 566-573.	1.4	5
21	Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers for Oxygen Evolution Reaction and Oxygen Reduction Reaction. ECS Meeting Abstracts, 2020, MA2020-02, 3618-3618.	0.0	0
22	The Role of Hydrated Alumina Layer on the Incorporation of Electrolyte Species in Anodizing of Aluminum. ECS Meeting Abstracts, 2020, MA2020-02, 1233-1233.	0.0	0
23	Activation of Catalytically Active Edge-Sharing Domains in Ca ₂ FeCoO ₅ for Oxygen Evolution Reaction in Highly Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 28823-28829.	8.0	25
24	Ultra-rapid formation of crystalline anatase TiO2 films highly doped with substrate species by a cathodic deposition method. Electrochemistry Communications, 2019, 108, 106561.	4.7	5
25	High dispersion and oxygen reduction reaction activity of Co ₃ O ₄ nanoparticles on platelet-type carbon nanofibers. RSC Advances, 2019, 9, 3726-3733.	3.6	9
26	Electrocatalytic and Photoelectrochemical Reduction of Carbon Dioxide at Hierarchical Hybrid Films of Copper(I) Oxide Decorated with Tungsten(VI) Oxide Nanowires. Journal of the Electrochemical Society, 2019, 166, H3271-H3278.	2.9	13
27	The role of tungsten species in the transition of anodic nanopores to nanotubes formed on iron alloyed with tungsten. Electrochimica Acta, 2019, 309, 274-282.	5.2	4
28	Fabrication of Superoleophobic Surface on Stainless Steel by Hierarchical Surface Roughening and Organic Coating. ISIJ International, 2019, 59, 345-350.	1.4	12
29	Role of electrochemical process parameters on the electrodeposition of silicon from 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. Electrochimica Acta, 2018, 265, 166-174.	5.2	14
30	Exâ€Situ Evidence for the Role of a Fluoride-Rich Layer Switching the Growth of Nanopores to Nanotubes: A Missing Piece of the Anodizing Puzzle. ChemElectroChem, 2018, 5, 570-570.	3.4	1
31	Enhanced hydrogen permeability of hafnium nitride nanocrystalline membranes by interfacial hydride conduction. Journal of Materials Chemistry A, 2018, 6, 2730-2741.	10.3	16
32	Highly increased breakdown potential of anodic films on aluminum using a sealed porous layer. Journal of Solid State Electrochemistry, 2018, 22, 2073-2081.	2.5	4
33	Highâ€Efficiency Direct Ammonia Fuel Cells Based on BaZr _{0.1} Ce _{0.7} Y _{0.2} O _{3â^'} <i>_δ</i> /Pd Oxideâ€Metal Junctions. Global Challenges, 2018, 2, 1700088.	3.6	25
34	Ex Situ Evidence for the Role of a Fluorideâ€Rich Layer Switching the Growth of Nanopores to Nanotubes: A Missing Piece of the Anodizing Puzzle. ChemElectroChem, 2018, 5, 610-618.	3.4	19
35	La _{0.7} Sr _{0.3} Mn _{1–<i>x</i>} Ni _{<i>x</i>} O _{3â~î^} Ele for the Four-Electron Oxygen Reduction Reaction in Concentrated Alkaline Media. Journal of Physical Chemistry C, 2018, 122, 22301-22308.	ctrocataly 3.1	sts 20
36	Ex-Situ Evidence on the Transition of Anodic Nanopores into Nanotubes Formed on Iron. ECS Meeting Abstracts, 2018, , .	0.0	0

Damian Kowalski

#	Article	IF	CITATIONS
37	Brownmilleriteâ€ŧype Ca ₂ FeCoO ₅ as a Practicable Oxygen Evolution Reaction Catalyst. ChemSusChem, 2017, 10, 2864-2868.	6.8	50
38	Brownmillerite-type Ca2 FeCoO5 as a Practicable Oxygen Evolution Reaction Catalyst. ChemSusChem, 2017, 10, 2841-2841.	6.8	5
39	Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries. Journal of Power Sources, 2017, 361, 243-248.	7.8	39
40	TiO2 Nanotubes As a Matrice for Electrodeposited Si, Au, and CdSe. ECS Meeting Abstracts, 2017, , .	0.0	1
41	1D Core-Shell Nanostructures Formed By Electrodeposition of Metals and Metalloids in Anodic TiO2 Nanotubes. ECS Meeting Abstracts, 2017, , .	0.0	0
42	Self-organization of TiO2 nanotubes in mono-, di- and tri-ethylene glycol electrolytes. Electrochimica Acta, 2016, 204, 287-293.	5.2	15
43	Low electric field strength self-organization of anodic TiO2 nanotubes in diethylene glycol electrolyte. Journal of Materials Chemistry A, 2015, 3, 6655-6661.	10.3	22
44	Current dependent formation of PEDOT inverse nanotube arrays. RSC Advances, 2013, 3, 2154.	3.6	32
45	TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today, 2013, 8, 235-264.	11.9	324
46	Advanced Geometries of PEDOT Formed in Titania Nanotubes. ChemPhysChem, 2012, 13, 3790-3793.	2.1	23
47	Polymer nanowires or nanopores? Site selective filling of titania nanotubes with polypyrrole. Journal of Materials Chemistry, 2011, 21, 17909.	6.7	44
48	Incorporation and migration of phosphorus species within anodic films on an Alâ€W alloy. Surface and Interface Analysis, 2011, 43, 893-902.	1.8	8
49	Flow-Injection Preconcentration of Chloramphenicol Using Molecularly Imprinted Polymer for HPLC Determination in Environmental Samples. Journal of Automated Methods and Management in Chemistry, 2011, 2011, 1-10.	0.5	13
50	Self-healing ion-permselective conducting polymer coating. Journal of Materials Chemistry, 2010, 20, 7630.	6.7	96
51	Polypyrrole self-organized nanopore arrays formed by controlled electropolymerization in TiO2 nanotube template. Chemical Communications, 2010, 46, 8585.	4.1	62
52	Self-healing Ability of Conductive Polypyrrole Coating with Artificial Defect. ECS Transactions, 2009, 16, 177-181.	0.5	12
53	High Proton Conductivity in Anodic ZrO ₂ /WO ₃ Nanofilms. Angewandte Chemie - International Edition, 2009, 48, 7582-7585.	13.8	16
54	Characterization of Amorphous Anodic Nb2O5 Nanofilm for Gas Sensing. ECS Transactions, 2009, 16, 57-65.	0.5	2

Damian Kowalski

#	Article	IF	CITATIONS
55	The effect of ultrasonic irradiation during electropolymerization of polypyrrole on corrosion prevention of the coated steel. Corrosion Science, 2008, 50, 286-291.	6.6	55
56	Corrosion protection of steel by bi-layered polypyrrole doped with molybdophosphate and naphthalenedisulfonate anions. Corrosion Science, 2007, 49, 1635-1644.	6.6	72
57	The effect of counter anions on corrosion resistance of steel covered by bi-layered polypyrrole film. Corrosion Science, 2007, 49, 3442-3452.	6.6	44