Yi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4895829/publications.pdf

Version: 2024-02-01

118	6,317	39	77
papers	citations	h-index	g-index
148	148	148	6597 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Simple structure descriptors quantifying the diffusion of ethene in small-pore zeolites: insights from molecular dynamic simulations. Inorganic Chemistry Frontiers, 2022, 9, 1590-1602.	3.0	4
2	High-throughput Screening of Aluminophosphate Zeolites for Adsorption Heat Pump Applications. Chemical Research in Chinese Universities, 2022, 38, 161-166.	1.3	2
3	Unraveling templated-regulated distribution of isolated SiO4 tetrahedra in silicoaluminophosphate zeolites with high-throughput computations. National Science Review, 2022, 9, .	4.6	4
4	Unveiling Secondary-Ion-Promoted Catalytic Properties of Cu-SSZ-13 Zeolites for Selective Catalytic Reduction of NO <i>_x</i>). Journal of the American Chemical Society, 2022, 144, 12816-12824.	6.6	51
5	A cage-based covalent organic framework for drug delivery. New Journal of Chemistry, 2021, 45, 3343-3348.	1.4	31
6	Turning waste into treasure: biomass carbon derived from sunflower seed husks used as anode for lithium-ion batteries. Ionics, 2021, 27, 1025-1039.	1.2	8
7	Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nature Reviews Materials, 2021, 6, 1156-1174.	23.3	209
8	High-throughput model-building and screening of zeolitic imidazolate frameworks for CO2 capture from flue gas. Chinese Chemical Letters, 2020, 31, 227-230.	4.8	19
9	Transitionâ€Metalâ€Containing Porphyrin Metal–Organic Frameworks as Ï€â€Backbonding Adsorbents for NO ₂ Removal. Angewandte Chemie - International Edition, 2020, 59, 19680-19683.	7.2	49
10	Functional Porous Materials Chemistry. Advanced Materials, 2020, 32, e2006277.	11.1	19
11	High-throughput screening of hypothetical aluminosilicate zeolites for CO2 capture from flue gas. Journal of CO2 Utilization, 2020, 42, 101346.	3.3	14
12	Recent Advances of Solidâ€State NMR Spectroscopy for Microporous Materials. Advanced Materials, 2020, 32, e2002879.	11.1	50
13	Stimuliâ∈Responsive Luminescent Properties of Tetraphenyletheneâ∈Based Strontium and Cobalt Metalâ∈"Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 19716-19721.	7.2	70
14	gem â€Diolâ€Type Intermediate in the Activation of a Ketone on Snâ€Î² Zeolite as Studied by Solidâ€State NMR Spectroscopy. Angewandte Chemie, 2020, 132, 19700-19706.	1.6	2
15	gem â€Diolâ€Type Intermediate in the Activation of a Ketone on Snâ€Î² Zeolite as Studied by Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 19532-19538.	7.2	13
16	Prediction by Convolutional Neural Networks of CO ₂ /N ₂ Selectivity in Porous Carbons from N ₂ Adsorption Isotherm at 77 K. Angewandte Chemie, 2020, 132, 19813-19816.	1.6	7
17	Prediction by Convolutional Neural Networks of CO ₂ /N ₂ Selectivity in Porous Carbons from N ₂ Adsorption Isotherm at 77 K. Angewandte Chemie - International Edition, 2020, 59, 19645-19648.	7.2	26
18	Singleâ€Atom Catalysts Supported by Crystalline Porous Materials: Views from the Inside. Advanced Materials, 2020, 32, e2002910.	11.1	65

#	Article	IF	CITATIONS
19	Molecular simulations of host-guest interactions between zeolite framework STW and its organic structure-directing agents. Chinese Chemical Letters, 2020, 31, 1951-1955.	4.8	10
20	Selective Acetylene Adsorption within an Imino-Functionalized Nanocage-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 5999-6006.	4.0	33
21	Database of open-framework aluminophosphate structures. Scientific Data, 2020, 7, 107.	2.4	14
22	Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 2019, 1, 601-611.	4.4	145
23	Helicity of perfluoroalkyl chains controlled by the selfâ€assembly of the Alaâ€Ala dipeptides. Chirality, 2019, 31, 992-1000.	1.3	8
24	Luminescent covalent organic framework as a recyclable turn-off fluorescent sensor for cations and anions in aqueous solution. Journal of Materials Chemistry C, 2019, 7, 11919-11925.	2.7	35
25	Systematic Study of Tiâ€Distribution in Titanosilicate *BEA Zeolites via Symmetryâ€Adapted Enumeration. Chinese Journal of Chemistry, 2019, 37, 593-596.	2.6	0
26	Necessity of Heteroatoms for Realizing Hypothetical Aluminophosphate Zeolites: A High-Throughput Computational Approach. Journal of Physical Chemistry Letters, 2019, 10, 1411-1415.	2.1	19
27	Graphical user interface for the program <i>FraGen</i> . Journal of Applied Crystallography, 2019, 52, 1455-1459.	1.9	1
28	Reducing possible combinations of Wyckoff positions for zeolite structure prediction. Faraday Discussions, 2018, 211, 541-552.	1.6	4
29	Formation mechanism and characterization of porous biomass carbon for excellent performance lithium-ion batteries. RSC Advances, 2018, 8, 12666-12671.	1.7	27
30	Toward a New Era of Designed Synthesis of Nanoporous Zeolitic Materials. ACS Nano, 2018, 12, 4096-4104.	7.3	56
31	Radical-Facilitated Green Synthesis of Highly Ordered Mesoporous Silica Materials. Journal of the American Chemical Society, 2018, 140, 4770-4773.	6.6	91
32	Creating intraparticle mesopores inside ZSM-5 nanocrystals under OSDA-free conditions and achievement of high activity in LDPE degradation. Microporous and Mesoporous Materials, 2018, 258, 178-188.	2.2	17
33	Roles of Hydroxyl Groups During Sideâ€Chain Alkylation of Toluene with Methanol over Zeolite Naâ€Y: A Density Functional Theory Study. Chinese Journal of Chemistry, 2017, 35, 716-722.	2.6	14
34	Accelerating the detection of unfeasible hypothetical zeolites via symmetric local interatomic distance criteria. Chinese Chemical Letters, 2017, 28, 1365-1368.	4.8	4
35	Enhancement of Gas Sorption and Separation Performance via Ligand Functionalization within Highly Stable Zirconium-Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 2131-2139.	1.4	35
36	Screening out unfeasible hypothetical zeolite structures via the closest non-adjacent Oâ√O pairs. Physical Chemistry Chemical Physics, 2017, 19, 1276-1280.	1.3	12

#	Article	IF	Citations
37	Applications of Zeolites in Sustainable Chemistry. CheM, 2017, 3, 928-949.	5.8	518
38	Genetic engineering of inorganic functional modular materials. Chemical Science, 2016, 7, 3472-3481.	3.7	10
39	Ionothermal synthesis and magnetic study of a new manganese(<scp>ii</scp>) phosphite with an unprecedented Mn/P ratio. Inorganic Chemistry Frontiers, 2016, 3, 924-927.	3.0	9
40	High-throughput dynamic microwave-assisted extraction coupled with liquid–liquid extraction for analysis of tetrabromobisphenol A in soil. Analytical Methods, 2016, 8, 8015-8021.	1.3	2
41	Dual Functionalized Cages in Metal–Organic Frameworks via Stepwise Postsynthetic Modification. Chemistry of Materials, 2016, 28, 4781-4786.	3.2	55
42	Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 2016, 351, 1188-1191.	6.0	297
43	Preparation of disordered carbon from rice husks for lithium-ion batteries. New Journal of Chemistry, 2016, 40, 325-329.	1.4	50
44	Organotemplate-free synthesis of an open-framework magnesium aluminophosphate with proton conduction properties. Chemical Communications, 2015, 51, 2149-2151.	2.2	38
45	Methyl viologen-templated zinc gallophosphate zeolitic material with dual photo-/thermochromism and tuneable photovoltaic activity. Chemical Science, 2015, 6, 2922-2927.	3.7	104
46	High proton conduction in a new alkali metal-templated open-framework aluminophosphate. Chemical Communications, 2015, 51, 9317-9319.	2.2	54
47	In silico prediction and screening of modular crystal structures via a high-throughput genomic approach. Nature Communications, 2015, 6, 8328.	5.8	63
48	Confinement Effect of Zeolite Cavities on Methanol-to-Olefin Conversion: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118, 24935-24940.	1.5	32
49	Solvatochromic AIE luminogens as supersensitive water detectors in organic solvents and highly efficient cyanide chemosensors in water. Chemical Science, 2014, 5, 2710.	3.7	274
50	In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. Journal of Materials Chemistry A, 2014, 2, 17994-18004.	5. 2	102
51	High storage capacity and separation selectivity for C ₂ hydrocarbons over methane in the metal–organic framework Cu–TDPAT. Journal of Materials Chemistry A, 2014, 2, 15823-15828.	5.2	102
52	A family of germanates constructed from Ge ₇ clusters co-templated by metal complexes and organic/inorganic species. CrystEngComm, 2014, 16, 9545-9554.	1.3	5
53	An N-rich metal–organic framework with an rht topology: high CO2 and C2 hydrocarbons uptake and selective capture from CH4. Chemical Communications, 2014, 50, 5031.	2.2	137
54	Methylviologen-templated layered bimetal phosphate: a multifunctional X-ray-induced photochromic material. Chemical Science, 2014, 5, 4237-4241.	3.7	130

#	Article	IF	CITATIONS
55	New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 2014, 114, 7268-7316.	23.0	449
56	Hydrothermal synthesis of an ITH-type germanosilicate zeolite in a non-concentrated gel system. Journal of Porous Materials, 2013, 20, 975-981.	1.3	14
57	Rolling Up the Sheet: Constructing Metal–Organic Lamellae and Nanotubes from a [{Mn ₃ (constructing Metal–Organic Lamellae and Nanotubes from a [{Mn ₃ (ipropanediolato) ₂ }(dicyanamide) ₂] _{<i>nHoneycomb Skeleton. Journal of the American Chemical Society, 2013, 135, 18276-18279.</i>}	6.6	34
58	Design and Synthesis of Two Porous Metal–Organic Frameworks with <i>nbo</i> and <i>agw</i> Topologies Showing High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 10720-10722.	1.9	41
59	Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chemical Communications, 2013, 49, 9006.	2.2	93
60	Molecular engineering of microporous crystals: (VII) The molar ratio dependence of the structure-directing ability of piperazine in the crystallization of four aluminophosphates with open-frameworks. Microporous and Mesoporous Materials, 2013, 176, 112-122.	2.2	18
61	Criteria for Zeolite Frameworks Realizable for Target Synthesis. Angewandte Chemie - International Edition, 2013, 52, 1673-1677.	7.2	107
62	A Gallogermanate Zeolite with Elevenâ€Memberedâ€Ring Channels. Angewandte Chemie - International Edition, 2013, 52, 5501-5503.	7.2	40
63	Predicting Hypothetical Zeolite Frameworks Using Program FraGen. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 1661-1665.	2.2	2
64	(C ₄ NH ₁₂) ₄ [M ₄ Al ₁₂ P ₁₆ O <sub (m="Co," 1969-1974.<="" 2012,="" 51,="" 8-ring="" aluminophosphate="" channels.="" chemistry,="" heteroatom-containing="" inorganic="" intersecting="" molecular="" new="" sieves="" td="" two="" with="" zn):=""><td>)>641.9</td><td>>] 30</td></sub>)>641.9	>] 30
65	Distribution of trivalent metal cations in alumino-/gallogermanate zeolites with JST topology. Dalton Transactions, 2012, 41, 12170.	1.6	6
66	Divalent-Metal-Stabilized Aluminophosphates Exhibiting a New Zeolite Framework Topology. Inorganic Chemistry, 2012, 51, 225-229.	1.9	34
67	K ₃ [Tb _{<i>x</i>} Eu _{1â\in"<i>x</i>} Ge ₃ O ₈ (OH) _{x = 1, 0.88, 0.67, 0): 2D-Layered Lanthanide Germanates with Tunable Photoluminescent Properties. Inorganic Chemistry, 2012, 51, 4779-4783.}	>2	10
68	A novel decanuclear Co(ii) cluster with adamantane-like metallic skeleton supported by 8-hydroxyquinoline and in situ formed CO32â^' anions. Dalton Transactions, 2012, 41, 6242.	1.6	14
69	Structures and properties of lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tetracarboxylate ligand. Dalton Transactions, 2012, 41, 12790.	1.6	50
70	LEV-zeotype magnesium aluminophosphates with variable Mg/Al ratios. Dalton Transactions, 2012, 41, 6855.	1.6	13
71	(C ₆ N ₄ H ₂₁) ₂ [Ge ₇ O ₁₄ F _{6 A New Germanate Compound Constructed from Alternately Stacked Pseudo Tripleâ€6heet Layers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1362-1364.}	o]: 0.6	1
72	A Germanate Compound Constructed from Dissymmetric Ge ₇ Chains and Metal Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1345-1350.	0.6	4

#	Article	IF	CITATIONS
73	Molecular engineering of microporous crystals: (IV) Crystallization process of microporous aluminophosphate AlPO4-11. Microporous and Mesoporous Materials, 2012, 152, 190-207.	2.2	26
74	FraGen: a computer program for real-space structure solution of extended inorganic frameworks. Journal of Applied Crystallography, 2012, 45, 855-861.	1.9	20
75	A Zinc Phosphate Structure with Unusual Doubleâ€Sheet Layers Templated by a Cobalt Hexaammine Complex. European Journal of Inorganic Chemistry, 2012, 2012, 36-39.	1.0	3
76	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO ₂ by Dual Functionalization of a <i>rht</i> ‶ype Metalâ€"Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 1412-1415.	7.2	430
77	A Computational Method for Specified Substructure Search in Inorganic Crystal Structures. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 536-540.	2.2	0
78	Syntheses and characterizations of heteroatom-containing open-framework aluminophosphates. Dalton Transactions, 2011, 40, 9289.	1.6	6
79	Na8CeSi6O18and Its Ti-Doped Analogue Na8Ce0.73Ti0.27Si6O18with Interesting Photovoltaic Properties. Chemistry of Materials, 2011, 23, 2842-2847.	3.2	13
80	ACO-Zeotype Iron Aluminum Phosphates with Variable Al/Fe Ratios Controlled by F ^{â^'} Ions. Inorganic Chemistry, 2011, 50, 1820-1825.	1.9	16
81	An inorganic–organic hybrid compound built from polyoxovanadate cluster and Mn (II) complexes. Inorganic Chemistry Communication, 2011, 14, 1640-1643.	1.8	6
82	A Gallogermanate Zeolite Constructed Exclusively by Threeâ€Ring Building Units. Angewandte Chemie - International Edition, 2011, 50, 3003-3005.	7.2	53
83	A new open-framework indium phosphate–phosphite containing intersecting extra-large 16-ring channels. Inorganic Chemistry Communication, 2011, 14, 727-730.	1.8	13
84	Synthesis, characterization and properties of microporous lanthanide silicates: K8Ln3Si12O32NO3·H2O (Ln=Eu, Tb, Gd, Sm). Solid State Sciences, 2010, 12, 422-427.	1.5	7
85	Ionothermal Synthesis of Extraâ€Largeâ€Pore Openâ€Framework Nickel Phosphite 5 H ₃ 0â[Ni ₈ (HPO ₃) ₉ Cl ₃]â<1.5 H Magnetic Anisotropy of the Antiferromagnetism. Angewandte Chemie - International Edition, 2010, 49, 2328-2331.	_{2<td>sub₂O:</td>}	sub ₂ O:
86	A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angewandte Chemie - International Edition, 2010, 49, 4915-4918.	7.2	511
87	New Lanthanide Silicates Based on Anionic Silicate Chain, Layer, and Framework Prepared under High-Temperature and High-Pressure Conditions. Inorganic Chemistry, 2010, 49, 9833-9838.	1.9	28
88	Spontaneous crystallization of a new chiral open-framework borophosphate in the ionothermal system. Dalton Transactions, 2010, 39, 1713.	1.6	24
89	Heteroatomâ€Stabilized Chiral Framework of Aluminophosphate Molecular Sieves. Angewandte Chemie - International Edition, 2009, 48, 314-317.	7.2	87
90	A Crystalline Germanate with Mesoporous 30-Ring Channels. Journal of the American Chemical Society, 2009, 131, 14128-14129.	6.6	80

#	Article	IF	CITATIONS
91	The Synthesis of Multiwalled Rareâ€Earth Phosphate Nanomaterials Using Organophosphates with Upconversion Properties. European Journal of Inorganic Chemistry, 2008, 2008, 2033-2037.	1.0	14
92	Combining Structure Modeling and Electron Microscopy to Determine Complex Zeolite Framework Structures. Angewandte Chemie - International Edition, 2008, 47, 4401-4405.	7.2	24
93	Introduction and application of zeobank: synthesis and structure databases of zeolites and related materials. Studies in Surface Science and Catalysis, 2007, , 168-176.	1.5	7
94	Synthesis, characterization and crystal structure analysis of an open-framework zirconium phosphate. Microporous and Mesoporous Materials, 2007, 104, 185-191.	2.2	19
95	Syntheses and Structures of Two Low-Dimensional Beryllium Phosphate Compounds: [C5H14N2]2[Be3(HPO4)5]·H2O and [C6H18N2]0.5[Be2(PO4)(HPO4)OH]·0.5H2O. Inorganic Chemistry, 2006 45, 3281-3286.	5,1.9	15
96	Synthesis and characterization of a new open-framework aluminophosphate C4N3H16·Al4P5O20(H2O)2 (AlPO-CJ31). Microporous and Mesoporous Materials, 2006, 93, 325-330.	2.2	8
97	[C3N2H12]·[MnAl3P4O17]·[H3O]: A manganese (II)-substituted aluminophosphate with zeotype AFN topology. Microporous and Mesoporous Materials, 2005, 85, 252-259.	2.2	8
98	In situ synthesis of aluminophosphate microporous molecular sieve 8-hydroxyquinoline–AlPO4-5 with blue-emitting luminescence property. Microporous and Mesoporous Materials, 2005, 85, 324-330.	2.2	8
99	Synthesis, Crystal Structure, and Solid-State NMR Spectroscopy of a New Open-Framework Aluminophosphate (NH4)2Al4(PO4)4 (HPO4)×H2O ChemInform, 2005, 36, no.	0.1	O
100	Synthesis, Crystal Structure, and Solid-State NMR Spectroscopy of a New Open-Framework Aluminophosphate (NH4)2Al4(PO4)4(HPO4)·H2O. Inorganic Chemistry, 2005, 44, 4391-4397.	1.9	27
101	Lamellar Mesostructured Aluminophosphates:Â Intercalation ofn-Alkylamines into Layered Aluminophosphate by Ultrasonic Method. Chemistry of Materials, 2005, 17, 2101-2107.	3.2	21
102	Prediction of Open-Framework Aluminophosphate Structures Using the Automated Assembly of Secondary Building Units Method with Lowenstein's Constraints. Chemistry of Materials, 2005, 17, 6086-6093.	3.2	27
103	Design of Chiral Zeolite Frameworks with Specified Channels through Constrained Assembly of Atoms. Chemistry of Materials, 2005, 17, 4399-4405.	3.2	51
104	Hydrogen-Bonded Helices in the Layered Aluminophosphate (C2H8N)2[Al2(HPO4)(PO4)2]. Angewandte Chemie - International Edition, 2004, 43, 2399-2402.	7.2	67
105	Covalent Bonding of Phosphonates of L-Proline and L-Cysteine to Î ³ -Zirconium Phosphate. European Journal of Inorganic Chemistry, 2004, 2004, 2956-2960.	1.0	13
106	A New 3-D Open-Framework Zinc Phosphate [C6H16N2] \hat{A} ·[Zn2(HPO4)3] Synthesized by a Solvothermal Combinatorial Approach. European Journal of Inorganic Chemistry, 2004, 2004, 3718.	1.0	6
107	Hydrogen-Bonded Helices in the Layered Aluminophosphate (C2H8N)2 [Al2(HPO4)(PO4)2] ChemInform, 2004, 35, no.	0.1	0
108	[C6N2H14]0.5× [MnAl3(PO4)4(H2O)2]: A Manganese(II)-Substituted Aluminophosphate with AFN Topology ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATION
109	[C6N2H14]0.5·[MnAl3(PO4)4(H2O)2]: A Manganese(II)-Substituted Aluminophosphate with AFN Topology. Inorganic Chemistry, 2004, 43, 2703-2707.	1.9	6
110	Assembly ofp-Nitroaniline Molecule in the Channel of Zeolite MFI Large Single Crystal for NLO Material. Journal of Physical Chemistry B, 2004, 108, 3426-3430.	1.2	28
111	Design of zeolite frameworks with cross-linked channels through constrained assembly of atoms. Studies in Surface Science and Catalysis, 2004, , 308-316.	1.5	3
112	The application of combinatorial approach in the hydrothermal syntheses of open-framework zinc phosphates. Studies in Surface Science and Catalysis, 2004, , 1028-1034.	1.5	1
113	Chirality Transfer from Guest Chiral Metal Complexes to Inorganic Framework: The Role of Hydrogen Bonding. Chemistry - A European Journal, 2003, 9, 5048-5055.	1.7	107
114	(C6H16N2)Zn3(HPO3)4H2O: a new layered zinc phosphite templated by diprotonated trans-1,4-diaminocyclohexane. Journal of Solid State Chemistry, 2003, 170, 303-307.	1.4	35
115	Design of Zeolite Frameworks with Defined Pore Geometry through Constrained Assembly of Atoms. Chemistry of Materials, 2003, 15, 2780-2785.	3.2	52
116	Synthesis and structure of a new layered zinc phosphite (C5H6N2)Zn(HPO3) containing helical chains. Chemical Communications, 2003, , 882-883.	2.2	105
117	Combinatorial approach for the hydrothermal syntheses of open-framework zinc phosphates. Chemical Communications, 2002, , 1720-1721.	2.2	47
118	Synthesis and Characterization of a New Layered Aluminophosphate [Al3P4O16][(CH3)2NHCH2CH2NH(CH3)2][H3O], Journal of Solid State Chemistry, 2002, 167, 282-288.	1.4	14