Nguyen Hoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4895254/publications.pdf

Version: 2024-02-01

87888 138484 3,902 92 38 h-index citations papers

g-index 92 92 92 3857 docs citations times ranked citing authors all docs

58

#	Article	IF	CITATIONS
1	Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sensors and Actuators B: Chemical, 2012, 174, 594-601.	7.8	174
2	Synthesis of Mesoporous NiO Nanosheets for the Detection of Toxic NO ₂ Gas. Chemistry - A European Journal, 2011, 17, 12896-12901.	3.3	158
3	Synthesis of porous CuO nanowires and its application to hydrogen detection. Sensors and Actuators B: Chemical, 2010, 146, 266-272.	7.8	142
4	Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. Journal of Hazardous Materials, 2014, 265, 124-132.	12.4	125
5	Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO ₃ , and SnO ₂ Nanowire Sensors. ACS Applied Materials & Interfaces, 2016, 8, 4828-4837.	8.0	116
6	On-chip fabrication of SnO2-nanowire gas sensor: The effect of growth time on sensor performance. Sensors and Actuators B: Chemical, 2010, 146, 361-367.	7.8	102
7	One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection. Sensors and Actuators A: Physical, 2020, 303, 111722.	4.1	98
8	Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection. Sensors and Actuators B: Chemical, 2010, 146, 239-244.	7.8	96
9	Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Applied Physics Letters, 2014, 105, .	3.3	93
10	Facile on-chip electrospinning of ZnFe2O4 nanofiber sensors with excellent sensing performance to H2S down ppb level. Journal of Hazardous Materials, 2018, 360, 6-16.	12.4	87
11	Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors. Materials Research Bulletin, 2020, 125, 110810.	5.2	80
12	Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide. Sensors and Actuators B: Chemical, 2019, 282, 876-884.	7.8	75
13	On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sensors and Actuators B: Chemical, 2013, 181, 529-536.	7.8	74
14	Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications. Journal of Nanomaterials, 2015, 2015, 1-14.	2.7	71
15	Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitive NO2 gas sensors. Sensors and Actuators B: Chemical, 2013, 183, 372-380.	7.8	70
16	Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles. Sensors and Actuators B: Chemical, 2016, 223, 453-460.	7.8	70
17	Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors. Sensors and Actuators B: Chemical, 2014, 193, 888-894.	7.8	69
18	Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 163-170.	3.5	67

#	Article	IF	CITATIONS
19	Controlled synthesis of ultrathin MoS ₂ nanoflowers for highly enhanced NO ₂ sensing at room temperature. RSC Advances, 2020, 10, 12759-12771.	3.6	67
20	In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors. International Journal of Hydrogen Energy, 2013, 38, 12090-12100.	7.1	61
21	A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method. RSC Advances, 2018, 8, 19449-19455.	3.6	57
22	C ₂ H ₅ OH and NO ₂ sensing properties of ZnO nanostructures: correlation between crystal size, defect level and sensing performance. RSC Advances, 2018, 8, 5629-5639.	3.6	55
23	High-performance acetone gas sensor based on Pt–Zn2SnO4 hollow octahedra for diabetic diagnosis. Journal of Alloys and Compounds, 2021, 886, 161284.	5.5	54
24	Novel Self-Heated Gas Sensors Using on-Chip Networked Nanowires with Ultralow Power Consumption. ACS Applied Materials & Samp; Interfaces, 2017, 9, 6153-6162.	8.0	53
25	Superior enhancement of NO2 gas response using n-p-n transition of carbon nanotubes/SnO2 nanowires heterojunctions. Sensors and Actuators B: Chemical, 2017, 238, 1120-1127.	7.8	53
26	Enhanced NH3 and H2 gas sensing with H2S gas interference using multilayer SnO2/Pt/WO3 nanofilms. Journal of Hazardous Materials, 2021, 412, 125181.	12.4	52
27	Comparative NO2 gas-sensing performance of the self-heated individual, multiple and networked SnO2 nanowire sensors fabricated by a simple process. Sensors and Actuators B: Chemical, 2014, 201, 7-12.	7.8	51
28	Effective monitoring and classification of hydrogen and ammonia gases with a bilayer Pt/SnO2 thin film sensor. International Journal of Hydrogen Energy, 2020, 45, 2418-2428.	7.1	51
29	Gas nanosensor design packages based on tungsten oxide: mesocages, hollow spheres, and nanowires. Nanotechnology, 2011, 22, 485503.	2.6	50
30	On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor. Materials Letters, 2016, 169, 231-235.	2.6	50
31	VOC gas sensor based on hollow cubic assembled nanocrystal Zn2SnO4 for breath analysis. Sensors and Actuators A: Physical, 2020, 302, 111834.	4.1	50
32	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	1.8	49
33	Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with p-type NiO nanoparticles. Applied Physics Letters, 2012, 101, .	3.3	48
34	Nanoporous and crystal evolution in nickel oxide nanosheets for enhanced gas-sensing performance. Sensors and Actuators B: Chemical, 2018, 273, 784-793.	7.8	47
35	Urea mediated synthesis of Ni(OH) 2 nanowires and their conversion into NiO nanostructure for hydrogen gas-sensing application. International Journal of Hydrogen Energy, 2018, 43, 9446-9453.	7.1	46
36	Facile synthesis of p-type semiconducting cupric oxide nanowires and their gas-sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42, 146-149.	2.7	45

#	Article	IF	CITATIONS
37	Gas sensor based on nanoporous hematite nanoparticles: Effect of synthesis pathways on morphology and gas sensing properties. Current Applied Physics, 2012, 12, 1355-1360.	2.4	42
38	Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and, ZnO/ZnO. Sensors and Actuators B: Chemical, 2021, 348, 130652.	7.8	40
39	Synthesis of single-crystal SnO2 nanowires for NOx gas sensors application. Ceramics International, 2012, 38, 6557-6563.	4.8	37
40	Self-heated Ag-decorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2S-selective sensing. Analytica Chimica Acta, 2019, 1069, 108-116.	5.4	37
41	Scalable Fabrication of High-Performance NO ₂ Gas Sensors Based on Tungsten Oxide Nanowires by On-Chip Growth and RuO ₂ -Functionalization. ACS Applied Materials & Interfaces, 2014, 6, 12022-12030.	8.0	36
42	Effective design and fabrication of low-power-consumption self-heated SnO2 nanowire sensors for reducing gases. Sensors and Actuators B: Chemical, 2019, 295, 144-152.	7.8	35
43	Multi gas sensors using one nanomaterial, temperature gradient, and machine learning algorithms for discrimination of gases and their concentration. Analytica Chimica Acta, 2020, 1124, 85-93.	5.4	35
44	Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance. Applied Surface Science, 2015, 324, 280-285.	6.1	34
45	Ethanol-Sensing Characteristics of Nanostructured ZnO: Nanorods, Nanowires, and Porous Nanoparticles. Journal of Electronic Materials, 2017, 46, 3406-3411.	2.2	34
46	On-chip growth of patterned ZnO nanorod sensors with PdO decoration for enhancement of hydrogen-sensing performance. International Journal of Hydrogen Energy, 2017, 42, 16294-16304.	7.1	34
47	General and scalable route to synthesize nanowire-structured semiconducting metal oxides for gas-sensor applications. Journal of Alloys and Compounds, 2013, 549, 260-268.	5.5	32
48	Comparative effects of synthesis parameters on the NO2 gas-sensing performance of on-chip grown ZnO and Zn2SnO4 nanowire sensors. Journal of Alloys and Compounds, 2018, 765, 1237-1242.	5.5	32
49	Ultrasensitive NO2 gas sensing performance of two dimensional ZnO nanomaterials: Nanosheets and nanoplates. Ceramics International, 2021, 47, 28811-28820.	4.8	31
50	Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance. Sensors and Actuators A: Physical, 2021, 317, 112454.	4.1	30
51	Highly selective H2S gas sensor based on WO3-coated SnO2 nanowires. Materials Today Communications, 2021, 26, 102094.	1.9	29
52	MoS2 nanosheets-decorated SnO2 nanofibers for enhanced SO2 gas sensing performance and classification of CO, NH3 and H2 gases. Analytica Chimica Acta, 2021, 1167, 338576.	5.4	29
53	Enhanced NO2 gas-sensing performance at room temperature using exfoliated MoS2 nanosheets. Sensors and Actuators A: Physical, 2021, 332, 113137.	4.1	28
54	Micro-wheels composed of self-assembled tungsten oxide nanorods for highly sensitive detection of low level toxic chlorine gas. RSC Advances, 2015, 5, 25204-25207.	3.6	27

#	Article	IF	CITATIONS
55	Ultrasensitive NO2 gas sensors using tungsten oxide nanowires with multiple junctions self-assembled on discrete catalyst islands via on-chip fabrication. Sensors and Actuators B: Chemical, 2016, 227, 198-203.	7.8	27
56	SO2 and H2S Sensing Properties of Hydrothermally Synthesized CuO Nanoplates. Journal of Electronic Materials, 2018, 47, 7170-7178.	2.2	27
57	Effective hydrogen gas nanosensor based on bead-like nanowires of platinum-decorated tin oxide. Sensors and Actuators B: Chemical, 2012, 173, 211-217.	7.8	26
58	Ultrasensitive NO2 gas sensors using hybrid heterojunctions of multi-walled carbon nanotubes and on-chip grown SnO2 nanowires. Applied Physics Letters, 2018, 112, .	3.3	26
59	An effective H ₂ S sensor based on SnO ₂ nanowires decorated with NiO nanoparticles by electron beam evaporation. RSC Advances, 2019, 9, 13887-13895.	3.6	26
60	Enhanced H2S gas-sensing performance of \hat{l}_{\pm} -Fe2O3 nanofibers by optimizing process conditions and loading with reduced graphene oxide. Journal of Alloys and Compounds, 2020, 826, 154169.	5.5	26
61	A novel design and fabrication of self-heated In2O3 nanowire gas sensor on glass for ethanol detection. Sensors and Actuators A: Physical, 2022, 345, 113769.	4.1	24
62	Ultralow power consumption gas sensor based on a self-heated nanojunction of SnO ₂ nanowires. RSC Advances, 2018, 8, 36323-36330.	3.6	23
63	A comparative study on the VOCs gas sensing properties of Zn2SnO4 nanoparticles, hollow cubes, and hollow octahedra towards exhaled breath analysis. Sensors and Actuators B: Chemical, 2021, 343, 130147.	7.8	23
64	Density-controllable growth of SnO2 nanowire junction-bridging across electrode for low-temperature NO2 gas detection. Journal of Materials Science, 2013, 48, 7253-7259.	3.7	21
65	Single-crystal zinc oxide nanorods with nanovoids as highly sensitive NO2 nanosensors. Materials Letters, 2013, 94, 41-43.	2.6	21
66	Nanoporous hematite nanoparticles: Synthesis and applications for benzylation of benzene and aromatic compounds. Journal of Alloys and Compounds, 2014, 582, 83-87.	5.5	21
67	A facile synthesis of ruthenium/reduced graphene oxide nanocomposite for effective electrochemical applications. Solar Energy, 2019, 191, 420-426.	6.1	21
68	Electronic noses based on metal oxide nanowires: A review. Nanotechnology Reviews, 2022, 11, 897-925.	5.8	21
69	Comparison of NO2 Gas-Sensing Properties of Three Different ZnO Nanostructures Synthesized by On-Chip Low-Temperature Hydrothermal Growth. Journal of Electronic Materials, 2018, 47, 785-793.	2.2	18
70	New Design of ZnO Nanorod- and Nanowire-Based NO ₂ Room-Temperature Sensors Prepared by Hydrothermal Method. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	17
71	Dip-coating decoration of Ag ₂ O nanoparticles on SnO ₂ nanowires for high-performance H ₂ S gas sensors. RSC Advances, 2020, 10, 17713-17723.	3.6	17
72	Nanoporous ZnO nanostructure synthesis by a facile method for superior sensitivity ethanol sensor applications. RSC Advances, 2016, 6, 64215-64218.	3.6	16

#	Article	IF	CITATIONS
73	Controlled Growth of Vertically Oriented Trilayer MoS ₂ Nanoflakes for Roomâ€Temperature NO ₂ Gas Sensor Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000004.	1.8	16
74	Prototype edge-grown nanowire sensor array for the real-time monitoring and classification of multiple gases. Journal of Science: Advanced Materials and Devices, 2020, 5, 409-416.	3.1	15
75	Urea mediated synthesis and acetone-sensing properties of ultrathin porous ZnO nanoplates. Materials Today Communications, 2020, 25, 101445.	1.9	15
76	ZnO coral-like nanoplates decorated with Pd nanoparticles for enhanced VOC gas sensing. Journal of Science: Advanced Materials and Devices, 2021, 6, 453-461.	3.1	15
77	Hollow ZnO nanorices prepared by a simple hydrothermal method for NO ₂ and SO ₂ gas sensors. RSC Advances, 2021, 11, 33613-33625.	3.6	15
78	Facile Hydrothermal Synthesis of Two-Dimensional Porous ZnO Nanosheets for Highly Sensitive Ethanol Sensor. Journal of Nanomaterials, 2019, 2019, 1-7.	2.7	13
79	Nitrogen-Doped Graphene Synthesized from a Single Liquid Precursor for a Field Effect Transistor. Journal of Electronic Materials, 2016, 45, 839-845.	2.2	12
80	CuO Nanofibers Prepared by Electrospinning for Gas Sensing Application: Effect of Copper Salt Concentration. Journal of Nanoscience and Nanotechnology, 2016, 16, 7910-7918.	0.9	11
81	Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification. Sensors and Actuators B: Chemical, 2022, 351, 130979.	7.8	11
82	3D micro-combs self-assembled from 2D N-doped In2S3 for room-temperature reversible NO2 gas sensing. Applied Materials Today, 2022, 26, 101355.	4.3	11
83	Facile synthesis of single-crystal nanoporous α-NiS nanosheets from Ni(OH)2 counterpart. Materials Letters, 2015, 161, 282-285.	2.6	10
84	Stable Electrochemical Measurements of Platinum Screen-Printed Electrodes Modified with Vertical ZnO Nanorods for Bacterial Detection. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	10
85	Transition metal oxides as Pt-free counter electrodes for liquid-junction photovoltaic devices. Vietnam Journal of Chemistry, 2019, 57, 784-791.	0.8	9
86	Realization of a portable H2S sensing instrument based on SnO2 nanowires. Journal of Science: Advanced Materials and Devices, 2020, 5, 40-47.	3.1	9
87	Single crystal cupric oxide nanowires: Length- and density-controlled growth and gas-sensing characteristics. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 58, 16-23.	2.7	8
88	Facile Synthesis of Pd-CuO Nanoplates with Enhanced SO2 and H2 Gas-Sensing Characteristics. Journal of Electronic Materials, 2021, 50, 2767-2778.	2.2	8
89	Fabrication of <i>p</i> -Type Co ₃ O ₄ Nanofiber Sensors for Ultra-Low H ₂ S Gas Detection at Low Temperature. Journal of Nanoscience and Nanotechnology, 2021, 2626-2632.	0.9	2
90	Controlled growth of indium oxide nanowires for gas sensing application. Recent Patents on Nanotechnology, 2021, 15, .	1.3	1

NGUYEN HOA

#	Article	IF	CITATIONS
91	Effective Removal of Arsenic in Drinking Water Using Facile Synthesized Fe2O3 Coated N-Doped TiO2 Nanoparticles. Journal of Water Chemistry and Technology, 2020, 42, 485-490.	0.6	1
92	Preparation and Gas Sensing Properties of rGO/CuO Nanocomposites. ECS Journal of Solid State Science and Technology, 2022, 11, 035009.	1.8	1