Amrik Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4895146/publications.pdf

Version: 2024-02-01

30 653 13 25 papers citations h-index g-index

31 31 31 756
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management, 2018, 215, 143-152.	7.8	91
2	Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environmental Science and Pollution Research, 2013, 20, 6628-6637.	5.3	85
3	Enzymatic Remediation of Polyethylene Terephthalate (PET)–Based Polymers for Effective Management of Plastic Wastes: An Overview. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602325.	4.1	79
4	Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Applied Microbiology and Biotechnology, 2014, 98, 9829-9841.	3.6	61
5	Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment. Extremophiles, 2017, 21, 479-490.	2.3	51
6	Alleviation of hexavalent chromium by using microorganisms: insight into the strategies and complications. Water Science and Technology, 2019, 79, 411-424.	2.5	40
7	Valorization of agro-starchy wastes as substrates for oleaginous microbes. Biomass and Bioenergy, 2019, 127, 105294.	5.7	31
8	Trends in Oil Production from Oleaginous Yeast Using Biomass: Biotechnological Potential and Constraints. Applied Biochemistry and Microbiology, 2018, 54, 361-369.	0.9	23
9	Simultaneous Bioremediation of Phenol and Cr (VI) from Tannery Wastewater Using Bacterial Consortium. International Journal of Applied Sciences and Biotechnology, 2015, 3, 50-55.	0.8	20
10	Biodegradation of 1,1,1-trichloro-2,2- $\langle i \rangle$ bis $\langle i \rangle$ (4-chlorophenyl) ethane (DDT) by using $\langle i \rangle$ Serratia marcescens $\langle i \rangle$ NCIM 2919. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 809-816.	1.5	19
11	Synthesis of silver nanoparticles (AgNPs) using <i>Ficus retusa</i> leaf extract for potential application as antibacterial and dye decolourising agents. Inorganic and Nano-Metal Chemistry, 2017, 47, 1520-1529.	1.6	19
12	Enhanced lipase production from <i>Aeromonas</i> sp. S1 using Sal deoiled seed cake as novel natural substrate for potential application in dairy wastewater treatment. Journal of Chemical Technology and Biotechnology, 2012, 87, 418-426.	3.2	18
13	Ecological and toxicological manifestations of microplastics: current scenario, research gaps, and possible alleviation measures. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 2020, 38, 1-20.	0.7	14
14	Remediation of Phenol Using Microorganisms: Sustainable Way to Tackle the Chemical Pollution Menace. Current Organic Chemistry, 2018, 22, 370-385.	1.6	12
15	Assessment of phenol-degrading ability of Acinetobactersp. B9 for its application in bioremediation of phenol-contaminated industrial effluents. Chemistry and Ecology, 2015, 31, 607-621.	1.6	11
16	Efficacy of ureolytic <i>Enterobacter cloacae</i> EMB19 mediated calcite precipitation in remediation of Zn (II). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 536-542.	1.7	10
17	Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions. Environmental Science and Pollution Research, 2021, 28, 46423-46430.	5.3	10
18	Overexpression and repression of key rateâ€imiting enzymes (acetyl CoA carboxylase and HMG) Tj ETQq0 0 0 0 Microbiology, 2021, 61, 4-14.	rgBT /Over 3.3	ock 10 Tf 50 6 10

Microbiology, 2021, 61, 4-14.

#	Article	IF	CITATIONS
19	Sustainable Options for Mitigation of Major Toxicants Originating from Electronic Waste. Current Science, 2016, 111, 1946.	0.8	9
20	Effectiveness of Sal Deoiled Seed Cake as an Inducer for Protease Production from Aeromonas sp. S1 for its Application in Kitchen Wastewater Treatment. Applied Biochemistry and Biotechnology, 2013, 170, 1896-1908.	2.9	7
21	Camelina sativa: An Emerging Biofuel Crop. , 2018, , 1-38.		6
22	Production of single cell oil by using cassava peel substrate from oleaginous yeast Rhodotorula glutinis. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101308.	3.1	5
23	Environmentâ€Friendly Synergistic Abiotic Stress for Enhancing the Yield of Lipids from Oleaginous Yeasts. European Journal of Lipid Science and Technology, 0, , 2000376.	1.5	5
24	Biodegradation of 4-chlorobiphenyl by using induced cells and cell extract of Burkholderia xenovorans. Bioremediation Journal, 2017, 21, 109-118.	2.0	4
25	Utilizing the ß-lactam hydrolyzing activity of ß-lactamase produced by Bacillus cereus EMB20 for remediation of ß-lactam antibiotics. International Biodeterioration and Biodegradation, 2022, 168, 105363.	3.9	4
26	Camelina sativa: An Emerging Biofuel Crop. , 2019, , 2889-2925.		3
27	Novel application of Mahua (Madhuca sp.) flowers for augmented protease production from Aeromonas sp. S1. Natural Product Communications, 2012, 7, 1359-62.	0.5	3
28	An Overview of Enzymes and Rate-Limiting Steps Responsible for Lipid Production in Oleaginous Yeast. Industrial Biotechnology, 2022, 18, 20-31.	0.8	2
29	Novel Application of Mahua (<i>Madhuca</i> sp.) Flowers for Augmented Protease Production from <i>Aeromonas</i> sp. S1. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	1
30	Current trends in applicability of thermophiles and thermozymes in bioremediation of environmental pollutants., 2022,, 161-176.		0