Matthew P Davey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4894890/publications.pdf

Version: 2024-02-01

39 papers 3,478 citations

257101 24 h-index 315357 38 g-index

43 all docs

43 docs citations

times ranked

43

5900 citing authors

#	Article	IF	Citations
1	Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches. New Phytologist, 2022, 235, 1853-1867.	3.5	8
2	Remote Sensing Phenology of Antarctic Green and Red Snow Algae Using WorldView Satellites. Frontiers in Plant Science, 2021, 12, 671981.	1.7	13
3	Synthetic algal-bacteria consortia for space-efficient microalgal growth in a simple hydrogel system. Journal of Applied Phycology, 2021, 33, 2805-2815.	1.5	20
4	A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science, 2020, 369, .	6.0	120
5	Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nature Communications, 2020, 11, 2527.	5.8	7 5
6	Responses of a Newly Evolved Auxotroph of Chlamydomonas to B ₁₂ Deprivation. Plant Physiology, 2020, 183, 167-178.	2.3	11
7	Bionic 3D printed corals. Nature Communications, 2020, 11, 1748.	5.8	78
8	Harnessing Synthetic Ecology for commercial algae production. Scientific Reports, 2019, 9, 9756.	1.6	2
9	Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytologist, 2019, 222, 1242-1255.	3.5	60
10	Effects of Copper and pH on the Growth and Physiology of Desmodesmus sp. AARLG074. Metabolites, 2019, 9, 84.	1.3	12
11	Natural variation in tolerance to sub-zero temperatures among populations of Arabidopsis lyrata ssp. petraea. BMC Plant Biology, 2018, 18, 277.	1.6	5
12	Growth of microalgae using nitrate-rich brine wash from the water industry. Algal Research, 2018, 33, 91-98.	2.4	14
13	Metabolomic Analysis of Campylobacter jejuni by Direct-Injection Electrospray Ionization Mass Spectrometry. Methods in Molecular Biology, 2017, 1512, 189-197.	0.4	1
14	On the challenges of using field spectroscopy to measure the impact of soil type on leaf traits. Biogeosciences, 2017, 14, 3371-3385.	1.3	18
15	Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?. PLoS Pathogens, 2016, 12, e1005790.	2.1	86
16	NO-Mediated [Ca ²⁺] _{cyt} Increases Depend on ADP-Ribosyl Cyclase Activity in Arabidopsis. Plant Physiology, 2016, 171, 623-631.	2.3	29
17	Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria. Plant Physiology, 2016, 172, 1928-1940.	2.3	53
18	Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in <i>Arabidopsis lyrata</i> ssp. <i>petraea</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3817-3823.	0.8	0

#	Article	IF	CITATIONS
19	Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13591-13596.	3.3	159
20	Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresource Technology, 2014, 157, 293-304.	4.8	97
21	Triacylglyceride Production and Autophagous Responses in Chlamydomonas reinhardtii Depend on Resource Allocation and Carbon Source. Eukaryotic Cell, 2014, 13, 392-400.	3.4	58
22	Metabolomic analysis of the food-borne pathogen Campylobacter jejuni: application of direct injection mass spectrometry for mutant characterisation. Metabolomics, 2014, 10, 887-896.	1.4	11
23	Metabolomics in plant environmental physiology. Journal of Experimental Botany, 2013, 64, 4011-4020.	2.4	96
24	Relationships between nitrogen, acid-unhydrolyzable residue, and climate among tree foliar litters. Canadian Journal of Forest Research, 2013, 43, 103-107.	0.8	14
25	Best of Both Worlds: Simultaneous High-Light and Shade-Tolerance Adaptations within Individual Leaves of the Living Stone Lithops aucampiae. PLoS ONE, 2013, 8, e75671.	1.1	13
26	The UV-B photoreceptor UVR8 promotes photosynthetic efficiency in Arabidopsis thaliana exposed to elevated levels of UV-B. Photosynthesis Research, 2012, 114, 121-131.	1.6	59
27	The mirror crack'd: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, <i>Ophrys speculum</i> New Phytologist, 2012, 196, 1038-1047.	3.5	47
28	Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 2010, 100, 57-73.	1.7	157
29	Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 2010, 21, 277-286.	3.3	976
30	Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiologia Plantarum, 2010, 140, 128-140.	2.6	90
31	Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1495-1506.	1.2	52
32	Intraspecfic variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp. petraea. Metabolomics, 2009, 5, 138-149.	1.4	55
33	Environmental metabolomics: a critical review and future perspectives. Metabolomics, 2009, 5, 3-21.	1.4	656
34	Metabolomic and physiological responses reveal multiâ€phasic acclimation of <i>Arabidopsis thaliana</i> to chronic UV radiation. Plant, Cell and Environment, 2009, 32, 1377-1389.	2.8	79
35	Populationâ€specific metabolic phenotypes of <i>Arabidopsis lyrata</i> ssp. <i>petraea</i> . New Phytologist, 2008, 177, 380-388.	3.5	56
36	Decomposition of oak leaf litter is related to initial litter Mn concentrations. Canadian Journal of Botany, 2007, 85, 16-24.	1.2	62

3

#	Article	IF	CITATIONS
37	Species-specific effects of elevated CO2 on resource allocation in Plantago maritima and Armeria maritima. Biochemical Systematics and Ecology, 2007, 35, 121-129.	0.6	4
38	Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics, 2007, 3, 203-210.	1.4	93
39	Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochemistry, 2004, 65, 2197-2204.	1.4	36